28,122 research outputs found

    Blue Phosphorene Oxide: Strain-tunable Quantum Phase Transitions and Novel 2D Emergent Fermions

    Full text link
    Tunable quantum phase transitions and novel emergent fermions in solid state materials are fascinating subjects of research. Here, we propose a new stable two-dimensional (2D) material, the blue phosphorene oxide (BPO), which exhibits both. Based on first-principles calculations, we show that its equilibrium state is a narrow-bandgap semiconductor with three bands at low energy. Remarkably, a moderate strain can drive a semiconductor-to-semimetal quantum phase transition in BPO. At the critical transition point, the three bands cross at a single point at Fermi level, around which the quasiparticles are a novel type of 2D pseudospin-1 fermions. Going beyond the transition, the system becomes a symmetry-protected semimetal, for which the conduction and valence bands touch quadratically at a single Fermi point that is protected by symmetry, and the low-energy quasiparticles become another novel type of 2D double Weyl fermions. We construct effective models characterizing the phase transition and these novel emergent fermions, and we point out several exotic effects, including super Klein tunneling, supercollimation, and universal optical absorbance. Our result reveals BPO as an intriguing platform for the exploration of fundamental properties of quantum phase transitions and novel emergent fermions, and also suggests its great potential in nanoscale device applications.Comment: 23 pages, 5 figure

    Complex Agent Networks explaining the HIV epidemic among homosexual men in Amsterdam

    Full text link
    Simulating the evolution of the Human Immunodeficiency Virus (HIV) epidemic requires a detailed description of the population network, especially for small populations in which individuals can be represented in detail and accuracy. In this paper, we introduce the concept of a Complex Agent Network(CAN) to model the HIV epidemics by combining agent-based modelling and complex networks, in which agents represent individuals that have sexual interactions. The applicability of CANs is demonstrated by constructing and executing a detailed HIV epidemic model for men who have sex with men (MSM) in Amsterdam, including a distinction between steady and casual relationships. We focus on MSM contacts because they play an important role in HIV epidemics and have been tracked in Amsterdam for a long time. Our experiments show good correspondence between the historical data of the Amsterdam cohort and the simulation results.Comment: 21 pages, 4 figures, Mathematics and Computers in Simulation, added reference
    corecore