10,003 research outputs found
Entanglement and quantum phase transition in alternating XY spin chain with next-nearest neighbour interactions
By using the method of density-matrix renormalization-group to solve the
different spin-spin correlation functions, the nearest-neighbouring
entanglement(NNE) and next-nearest-neighbouring entanglement(NNNE) of
one-dimensional alternating Heisenberg XY spin chain is investigated in the
presence of alternating nearest neighbour interactions of exchange couplings,
external magnetic fields and next-nearest neighbouring interactions. For
dimerized ferromagnetic spin chain, NNNE appears only above the critical
dimerized interaction, meanwhile, the dimerized interaction effects quantum
phase transition point and improves NNNE to a large value. We also study the
effect of ferromagnetic or antiferromagnetic next-nearest neighboring (NNN)
interactions on the dynamics of NNE and NNNE. The ferromagnetic NNN interaction
increases and shrinks NNE below and above critical frustrated interaction
respectively, while the antiferromagnetic NNN interaction always decreases NNE.
The antiferromagnetic NNN interaction results to a larger value of NNNE in
comparison to the case when the NNN interaction is ferromagnetic.Comment: 13 pages, 4 figures,. accepted by Chinese Physics B 2008 11 (in
press
Competition between the BCS superconductivity and ferromagnetic spin fluctuations in MgCNi
The low temperature specific heat of the superconductor MgCNi and a
non-superconductor MgCNi is investigated in detail. An additional
contribution is observed from the data of MgCNi but absent in
MgCNi, which is demonstrated to be insensitive to the applied
magnetic field even up to 12 Tesla. A detailed discussion on its origin is then
presented. By subtracting this additional contribution, the zero field specific
heat of MgCNi can be well described by the BCS theory with the gap ratio
() determined by the previous tunneling measurements. The
conventional s-wave pairing state is further proved by the magnetic field
dependence of the specific heat at low temperatures and the behavior of the
upper critical field.Comment: To appear in Physical Review B, 6 pages, 7 figure
Evidence for s-wave pairing from measurement on lower critical field in
Magnetization measurements in the low field region have been carefully
performed on a well-shaped cylindrical and an ellipsoidal sample of
superconductor . Data from both samples show almost the same results.
The lower critical field and the London penetration depth
are thus derived. It is found that the result of normalized superfluid density
of can be well described by BCS
prediction with the expectation for an isotropic s-wave superconductivity.Comment: To appear in Phys. Rev.
Structure and magnetic properties of nanostructured Dy/transition-metal multilayered films
We report the results of magnetic and microstructural studies for T/Dy (T=Fe, Co, Ni) compositionally modulated films prepared in a multiple-gun sputtering system. The perpendicular anisotropy and magnetization were measured systematically for X-Ã… Fe/Y-Ã… Dy and X-Ã… Co/Y-Ã… Dy films. The layer-thickness dependence of the magnetization for Co/Dy and Fe/Dy was interpreted in terms of the antiparallel coupling between transition-metal and Dy magnetic moments. For Co/Dy films the ranges of X and Y required for perpendicular anisotropy were determined. A comparision of the structural and magnetic properties of Ni/Dy, Co/Dy, and Fe/Dy is given and the origin of the perpendicular anisotropy is discussed. Journal of Applied Physics is copyrighted by The American Institute of Physics
Enhanced Orbital Degeneracy in Momentum Space for LaOFeAs
The Fermi surfaces (FS) of LaOFeAs (in =0 plane) consist of two
hole-type circles around point, which do not touch each other, and two
electron-type co-centered ellipses around M point, which are degenerate along
the M-X line. By first-principles calculations, here we show that additional
degeneracy exists for the two electron-type FS, and the crucial role of
F-doping and pressure is to enhance this orbital degeneracy. It is suggested
that the inter-orbital fluctuation is the key point to understand the
unconventional superconductivity in these materials.Comment: 4 pages, 5 figure
Fabrication and superconductivity of NaxTaS2 crystals
In this paper we report the growth and superconductivity of
crystals. The structural data deduced from X-ray diffraction pattern shows that
the sample has the same structure as . A series of crystals with
different superconducting transition temperatures () ranging from 2.5 K to
4.4 K were obtained. It is found that the rises with the increase of
content determined by Energy-Dispersive x-ray microanalysis(EDX) of Scanning
Electron Microscope (SEM) on these crystals. Compared with the resistivity
curve of un-intercalated sample ( = 0.8 K, 70
K), no signal of charge density wave (CDW) was observed in samples
and . However, in some samples with lower
, the CDW appears again at about 65 K. Comparison between the anisotropic
resistivity indicates that the anisotropy becomes smaller in samples with more
intercalation (albeit a weak semiconducting behavior along c-axis) and
thus higher . It is thus concluded that there is a competition between the
superconductivity and the CDW. With the increase of sodium content, the rise of
in is caused mainly by the suppression to the CDW in
, and the conventional rigid band model for layered dichalcogenide
may be inadequate to explain the changes induced by the slight intercalation of
sodium in .Comment: 8 pages, 13 figures, To appear in Physical Review
- …