7,988 research outputs found

    The ground state entanglement in the XXZXXZ model

    Full text link
    In this paper, we investigate spin entanglement in the XXZXXZ model defined on a dd-dimensional bipartite lattice. The concurrence, a measure of the entanglement between two spins, is analyzed. We prove rigorously that the ground state concurrence reaches maximum at the isotropic point. For dimensionality d2d \ge 2, the concurrence develops a cusp at the isotropic point and we attribute it to the existence of magnetic long-range order.Comment: 5 pages, 2 figure

    Sulforaphane induces adipocyte browning and promotes glucose and lipid utilization

    Get PDF
    Scope: Obesity is closely related to the imbalance of white adipose tissue storing excess calories, and brown adipose tissue dissipating energy to produce heat in mammals. Recent studies revealed that acquisition of brown characteristics by white adipocytes, termed “browning,” may positively contribute to cellular bioenergetics and metabolism homeostasis. The goal was to investigate the putative effects of natural antioxidant sulforaphane (1-isothiocyanate-4-methyl-sulfonyl butane; SFN) on browning of white adipocytes. Methods and Results: 3T3-L1 mature white adipocytes were treated with SFN for 48 h, and then the mitochondrial content, function, and energy utilization were assessed. SFN was found to induce 3T3-L1 adipocytes browning based on the increased mitochondrial content and activity of respiratory chain enzymes, whereas the mechanism involved the upregulation of nuclear factor E2-related factor 2/ sirtuin1/ peroxisome proliferator-activated receptor gamma coactivator 1 alpha signaling. SFN enhanced uncoupling protein 1 expression, a marker for brown adipocyte, leading to the decrease in cellular ATP. SFN also enhanced glucose uptake and oxidative utilization, lipolysis and fatty acid oxidation in 3T3-L1 adipocytes. Conclusion: SFN-induced browning of white adipocytes enhanced the utilization of cellular fuel, and the application of SFN is a promising strategy to combat obesity and obesity-related metabolic disorder

    Detection of super-high-frequency partial discharge by using neural networks

    Get PDF
    A system has been developed for the detection of super-high-frequency (SHF) partial discharge (PD) at frequencies up to 6 GHz. The system consists of three antennas for capturing PDs and a fast digital oscilloscope for sampling data. One of the antennas is a disk-cone antenna with frequency range below 710 MHz. The other two half TEM horn antennas have been designed and constructed for the frequency range 716 MHz - 5 GHz. To extend the frequency range up to 6 GHz, a methodology has been developed by compensating amplitude-response to frequency-magnitude. The compensation is realised by using multilayer feed-forward neural networks to equalise on amplitude-response. A direct sampling method is used to log the captured PD data. This PD detection system has been implemented to measure PDs at a 400 kV electrical substation (Strathaven, Scottish Power Ltd)

    Fast and easy blind deblurring using an inverse filter and PROBE

    Full text link
    PROBE (Progressive Removal of Blur Residual) is a recursive framework for blind deblurring. Using the elementary modified inverse filter at its core, PROBE's experimental performance meets or exceeds the state of the art, both visually and quantitatively. Remarkably, PROBE lends itself to analysis that reveals its convergence properties. PROBE is motivated by recent ideas on progressive blind deblurring, but breaks away from previous research by its simplicity, speed, performance and potential for analysis. PROBE is neither a functional minimization approach, nor an open-loop sequential method (blur kernel estimation followed by non-blind deblurring). PROBE is a feedback scheme, deriving its unique strength from the closed-loop architecture rather than from the accuracy of its algorithmic components

    Roles of moisture and cyclic loading in microstructures and their effects on mechanical properties for typical Chinese bituminous coals

    Get PDF
    This work aimed at studying the roles of moisture and cyclic loading in microstructures and their effects on mechanical properties for typical Chinese bituminous coals. Different relative moisture contents (100%, 75%, 50%, 25%, and 0%) for Shenmu coal (SM), Hongshaquan coal (HSQ), and Wucaiwan coal (WCW) were chosen to study the effects of moisture. The raw SM was then further selected to investigate the effects of cyclic loading. Images of coals surfaces and mechanical properties during simulated crushing process were recorded and combined to be analyzed. The results showed that the moisture possessed significant effects on coal mechanical properties, which strongly depended on their porosities. As for low porosity coal (SM), the adsorption of moisture can soften and lubricate the microstructures, weakening mechanical properties. While the drying process would destroy the microstructures and decease mechanical properties for high porosity coals (HSQ and WCW). Under the cyclic loading process, the cumulative effects of strain showed a step-up state and the first cyclic loading can typically cause the biggest change of microstructures and produce the largest strain under different stress levels. Finally, a normalized quantitative relationship ([fórmula]) between the relative fractal dimension and relative stress was built

    The impact of hospital attributes on patient choice for first visit

    Get PDF
    The underutilization of primary care in urban China threatens the efficiency and effectiveness of the Chinese health system. To guide patient flow to primary care, the Chinese government has rolled out a sequence of health care reforms which improve the affordability, the infrastructure and workforce of the primary care system. However, these measures have not yielded the desired effect on the utilization of primary care, which is lowest in urban areas. It is unclear how the factors identified to influence facility choice in urban China are actually impacting choice behaviour. We conducted a discrete choice experiment to elicit the quantitative impact of facility attributes when choosing a health care facility for first visit and analysed how the stated choice varies with these attributes. We found that the respondents placed different weights on the identified attributes, depending on whether they perceived their condition to be minor or severe. For conditions perceived as minor, the respondents valued visit time, equipment and medical skill most. For conditions perceived as severe, they placed most importance on equipment, travel time and facility size. We found that for conditions perceived as minor, only 14% preferred visiting a facility over opting out, a percentage which would more than double to 37% if community health centres were maximally improved. For conditions perceived as severe, improvements in community health centres may almost double first visits to primary care, mostly from patients who would otherwise choose higher-level facilities. Our findings suggest that for both severity conditions, improvements to medical equipment and medical skill at community health centres in urban China can effectively direct patient flow to primary care and promote the efficiency and effectiveness of the urban health system
    corecore