13,539 research outputs found

    Simulations of a classical spin system with competing superexchange and double-exchange interactions

    Full text link
    Monte-Carlo simulations and ground-state calculations have been used to map out the phase diagram of a system of classical spins, on a simple cubic lattice, where nearest-neighbor pairs of spins are coupled via competing antiferromagnetic superexchange and ferromagnetic double-exchange interactions. For a certain range of parameters, this model is relevant for some magnetic materials, such as doped manganites, which exhibit the remarkable colossal magnetoresistance effect. The phase diagram includes two regions in which the two sublattice magnetizations differ in magnitude. Spin-dynamics simulations have been used to compute the time- and space-displaced spin-spin correlation functions, and their Fourier transforms, which yield the dynamic structure factor S(q,ω)S(q,\omega) for this system. Effects of the double-exchange interaction on the dispersion curves are shown.Comment: Latex, 3 pages, 3 figure

    Improved Spin Dynamics Simulations of Magnetic Excitations

    Full text link
    Using Suzuki-Trotter decompositions of exponential operators we describe new algorithms for the numerical integration of the equations of motion for classical spin systems. These techniques conserve spin length exactly and, in special cases, also conserve the energy and maintain time reversibility. We investigate integration schemes of up to eighth order and show that these new algorithms can be used with much larger time steps than a well established predictor-corrector method. These methods may lead to a substantial speedup of spin dynamics simulations, however, the choice of which order method to use is not always straightforward.Comment: J. Mod. Phys. C (in press

    Singular current response from isolated impurities in d-wave superconductors

    Full text link
    The current response of a d-wave superconductor containing a single impurity is calculated and shown to be singular in the low-temperature limit, leading in the case of strong scattering to a 1/T term in the penetration depth λ(T)\lambda(T) similar to that induced by Andreev surface bound states. For a small number of such impurities, we argue this low-TT upturn could be observable in cuprate superconductors.Comment: 4 pages, 2 .eps figures. Minor changes to match the published versio

    Diffusion in a multi-component Lattice Boltzmann Equation model

    Full text link
    Diffusion phenomena in a multiple component lattice Boltzmann Equation (LBE) model are discussed in detail. The mass fluxes associated with different mechanical driving forces are obtained using a Chapman-Enskog analysis. This model is found to have correct diffusion behavior and the multiple diffusion coefficients are obtained analytically. The analytical results are further confirmed by numerical simulations in a few solvable limiting cases. The LBE model is established as a useful computational tool for the simulation of mass transfer in fluid systems with external forces.Comment: To appear in Aug 1 issue of PR

    Multi-component lattice-Boltzmann model with interparticle interaction

    Full text link
    A previously proposed [X. Shan and H. Chen, Phys. Rev. E {\bf 47}, 1815, (1993)] lattice Boltzmann model for simulating fluids with multiple components and interparticle forces is described in detail. Macroscopic equations governing the motion of each component are derived by using Chapman-Enskog method. The mutual diffusivity in a binary mixture is calculated analytically and confirmed by numerical simulation. The diffusivity is generally a function of the concentrations of the two components but independent of the fluid velocity so that the diffusion is Galilean invariant. The analytically calculated shear kinematic viscosity of this model is also confirmed numerically.Comment: 18 pages, compressed and uuencoded postscript fil

    A Lattice Boltzmann method for simulations of liquid-vapor thermal flows

    Full text link
    We present a novel lattice Boltzmann method that has a capability of simulating thermodynamic multiphase flows. This approach is fully thermodynamically consistent at the macroscopic level. Using this new method, a liquid-vapor boiling process, including liquid-vapor formation and coalescence together with a full coupling of temperature, is simulated for the first time.Comment: one gzipped tar file, 19 pages, 4 figure
    • …
    corecore