48 research outputs found

    Organic rankine cycle (ORC) system applications for solar energy: Recent technological advances

    Full text link
    © 2019 by the authors. Organic Rankine Cycle (ORC) power generation systems may be used to utilize heat source with low pressure and low temperature such as solar energy. Many researchers have focused on different aspects ofORCpower generation systems, but none so far has focused on the patent landscape of ORC system applications. As such, the objective of this study is to identify published patents on ORC system applications, particularly for solar energy. Four (4) technologies were identified in ORC application for solar energy: parabolic dish, parabolic trough, solar tower, and linear Fresnel reflector. A methodical search and analysis of the patent landscape in ORC system applications for solar energy published between 2007-2018 was conducted using the Derwent Innovation patent database. From the approximately 51 million patents in the database from various countries and patent agencies, 3859 patents were initially identified to be related to ORC applications for solar energy. After further stringent selection processes, only 1100 patents were included in this review. From these 1100 patents, approximately 12% (130 patents) are associated with parabolic dishes, about 39% (428 patents) are associated with parabolic troughs, approximately 21% (237 patents) are associated with solar towers, and about 28% (305 patents) are associated with linear Fresnel reflectors. Published patents on solar tower technology are currently on an increasing trend, led by China. All of these patents were published in the past 11 years. From this study, further researches on ORC application are still ongoing, but ORC application for solar energy has the potential to advance; allowing the world to ease issues related to over-reliance on fossil fuel

    The performance and exhaust emissions of a diesel engine fuelled with Calophyllum inophyllum- palm biodiesel

    Full text link
    © 2019 by the authors. Nowadays, increased interest among the scientific community to explore the Calophyllum inophyllum as alternative fuels for diesel engines is observed. This research is about using mixed Calophyllum inophyllum-palm oil biodiesel production and evaluation that biodiesel in a diesel engine. The Calophyllum inophyllum-palm oil methyl ester (CPME) is processed using the following procedure: (1) the crude Calophyllum inophyllum and palm oils are mixed at the same ratio of 50:50 volume %, (2) degumming, (3) acid-catalysed esterification, (4) purification, and (5) alkalinecatalysed transesterification. The results are indeed encouraging which satisfy the international standards, CPME shows the high heating value (37.9 MJ/kg) but lower kinematic viscosity (4.50 mm2/s) due to change the fatty acid methyl ester (FAME) composition compared to Calophyllum inophyllum methyl ester (CIME). The average results show that the blended fuels have higher Brake Specific Fuel Consumption (BSFC) and NOx emissions, lower Brake Thermal Efficiency (BTE), along with CO and HC emissions than diesel fuel over the entire range of speeds. Among the blends, CPME5 offered better performance compared to other fuels. It can be recommended that the CPME blend has great potential as an alternative fuel because of its excellent characteristics, better performance, and less harmful emission than CIME blends

    Techno-economic analysis of CO<inf>2</inf> capture technologies in offshore natural gas field: Implications to carbon capture and storage in Malaysia

    Full text link
    © 2020 by the authors. Growing concern on global warming directly related to CO2 emissions is steering the implementation of carbon capture and storage (CCS). With Malaysia having an estimated 37 Tscfd (Trillion standard cubic feet) of natural gas remains undeveloped in CO2 containing natural gas fields, there is a need to assess the viability of CCS implementation. This study performs a techno-economic analysis for CCS at an offshore natural gas field in Malaysia. The framework includes a gas field model, revenue model, and cost model. A techno-economic spreadsheet consisting of Net Present Value (NPV), Payback Period (PBP), and Internal Rate of Return (IRR) is developed over the gas field's production life of 15 years for four distinctive CO2 capture technologies, which are membrane, chemical absorption, physical absorption, and cryogenics. Results predict that physical absorption solvent (Selexol) as CO2 capture technology is most feasible with IRR of 15% and PBP of 7.94 years. The output from the techno-economic model and associated risks of the CCS project are quantified by employing sensitivity analysis (SA), which indicated that the project NPV is exceptionally sensitive to gas price. On this basis, the economic performance of the project is reliant on revenues from gas sales, which is dictated by gas market price uncertainties

    Experimental investigation, techno-economic analysis and environmental impact of bioethanol production from banana stem

    Full text link
    © 2019 by the authors. Banana stem is being considered as the second largest waste biomass in Malaysia. Therefore, the environmental challenge of managing this huge amount of biomass as well as converting the feedstock into value-added products has spurred the demand for diversified applications to be implemented as a realistic approach. In this study, banana stem waste was experimented for bioethanol generation via hydrolysis and fermentation methods with the presence of Saccharomyces cerevisiae (yeast) subsequently. Along with the experimental analysis, a realistic pilot scale application of electricity generation from the bioethanol has been designed by HOMER software to demonstrate techno-economic and environmental impact. During sulfuric acid and enzymatic hydrolysis, the highest glucose yield was 5.614 and 40.61 g/L, respectively. During fermentation, the maximum and minimum glucose yield was 62.23 g/L at 12 h and 0.69 g/L at 72 h, respectively. Subsequently, 99.8% pure bioethanol was recovered by a distillation process. Plant modeling simulated operating costs 65,980 US/y,netproductioncost869347US/y, net production cost 869347 US and electricity cost 0.392 US$/kWh. The CO2 emission from bioethanol was 97,161 kg/y and SO2 emission was 513 kg/y which is much lower than diesel emission. The overall bioethanol production from banana stem and application of electricity generation presented the approach economically favorable and environmentally benign

    Techno-economic analysis and physicochemical properties of Ceiba pentandra as second-generation biodiesel based on ASTM D6751 and EN 14214

    Full text link
    © 2019 by the authors. Processing biodiesel from non-edible sources of feedstock seems to be thriving in recent years. It also has also gathered more attention than in the past, mainly because the biodiesel product is renewable and emits lower pollution compared to fossil fuels. Researchers have started their work on various kinds of biodiesel product, especially from a non-edible feedstock. Non-edible feedstocks such as Ceiba pentandra show great potential in the production of biodiesel, especially in the Southeast Asia region because the plants seem to be abundant in that region. Ceiba pentandra, also known as the Kapok tree, produces hundreds of pods with a length of 15 cm (5.9 in) and diameter 2-5 cm (1-2 in). The pods consist of seeds and fluffin the surrounding areas inside the pod, which itself contains yellowish fibre, a mixture of cellulose and lignin. The seeds of Ceiba pentandra can be used as feedstock for biodiesel production. The study for Ceiba pentandra will involve techno-economic, as well as a sensitivity analysis. Moreover, the study also shows that the techno-economic analysis of a biodiesel processing plant for 50 ktons Ceiba pentandra with a life span of 20 years is around 701millionwith3.7yearsofthepaybackperiod.Besidesthat,thisstudyalsoshowsthedifferencesinoperatingcostandoilconversionyield,whichhastheleastimpactonrunningcost.Byimprovingtheconversionprocessescontinuouslyandbyincreasingtheoperationaleffciency,thecostofproductionwilldecrease.Inaddition,thestudyalsoexplainsthedifferencesoffinalpricebiodieselanddieselfossilfuel,bothshowingdissimilarscenariossubsidyandtaxation.Biodieselhasasubsidyof701 million with 3.7 years of the payback period. Besides that, this study also shows the differences in operating cost and oil conversion yield, which has the least impact on running cost. By improving the conversion processes continuously and by increasing the operational effciency, the cost of production will decrease. In addition, the study also explains the differences of final price biodiesel and diesel fossil fuel, both showing dissimilar scenarios subsidy and taxation. Biodiesel has a subsidy of 0.10/L and $0.18/L with a total tax exemption of 15%. The value was obtained from the latest subsidy cost and diesel in Malaysia. Finally, further research is needed in order to fully utilize the use of Ceiba pentandra as one of the non-edible sources of biodiesel

    Optimization of cerbera manghas biodiesel production using artificial neural networks integrated with ant colony optimization

    Full text link
    © 2019 by the authors. Optimizing the process parameters of biodiesel production is the key to maximizing biodiesel yields. In this study, artificial neural network models integrated with ant colony optimization were developed to optimize the parameters of the two-step Cerbera manghas biodiesel production process: (1) esterification and (2) transesterification. The parameters of esterification and transesterification processes were optimized to minimize the acid value and maximize the C. manghas biodiesel yield, respectively. There was excellent agreement between the average experimental values and those predicted by the artificial neural network models, indicating their reliability. These models will be useful to predict the optimum process parameters, reducing the trial and error of conventional experimentation. The kinetic study was conducted to understand the mechanism of the transesterification process and, lastly, the model could measure the physicochemical properties of the C. manghas biodiesel

    Experimental Study of the Corrosiveness of Ternary Blends of Biodiesel Fuel

    Full text link
    Biodiesel is an alternative renewable resource to petroleum-based diesel. The aim of using biodiesel is to reduce environmental pollution and combat global warming. Biodiesel application in compression ignition engines has shown its compatibility with better combustion characteristics and high engine performance. Many advantages can be obtained by using biodiesel, including reducing exhaust gases, reducing air toxicity, providing energy security, and being biodegradable. However, biodiesel’s disadvantage involves oxidation stability, corrosion, degradation, and compatibility with other metallic materials. The present study investigates the corrosive behavior of the ternary blend (waste cooking-Calophyllum inophyllum biodiesel-diesel) fuel that occurs in contact with mild steel and stainless steel 316. The observation study for mild steel and stainless steel 316 material under the static immersion method was performed for 7,200 h and 14,400 h, respectively, at room temperature (25°C–30°C). In every 720 and 1,440 h of immersion time, the coupon’s profile was analyzed by scanning electron microscopy (SEM)/electron-dispersive spectrometer (EDS), and the mass loss was observed, for corrosivity investigation. Based on the obtained results, the average corrosion rate of mild steel and stainless steel 316 is 0.6257 and 0.0472 nm/year at 7,200 h, respectively; the difference in corrosion rate for these metallic materials is approximately 92.46%. The degradation of the fuel properties such as kinematic viscosity, density, refractive index, and acid value was monitored. In this study, stainless steel 316 was more resistant to corrosion attack with some micro pitting and showed better compatibility with the ternary blend than mild steel. The regression analysis and the correlation of corrosion rate were studied.</jats:p

    Biodiesel Production from Reutealis trisperma Oil Using Conventional and Ultrasonication through Esterification and Transesterification

    Full text link
    The limitation of fossil fuel sources and negative environmental impact persuade scientists around the world to find a solution. One possible solution is by using renewable fuel to replace fossil fuel with an inexpensive, fast, and effective production process. The objective of this study is to investigate the biodiesel production from crude Reutealis trisperma oil using the conventional and the ultrasonic bath stirrer method through the esterification and transesterification process. The result shows that the most effective reaction time with an optimum condition for the esterification and transesterification of Reutealis trisperma oil is at 2 h 30 min by using the ultrasonic bath stirrer method. The optimum conditions at a temperature of 55 °C for the esterification and at 60 °C for transesterification with 2% (v/v) of sulphuric acid with catalyst concentration of 0.5 wt.% were a methanol-to-oil ratio of 60%, and agitation speed of 1000 rpm. This optimum condition gives the highest yield of 95.29% for the Reutealis trisperma biodiesel. The results showed that the ultrasonic bath stirrer method had more effect on the reaction time needed than using the conventional method and reduced half of the conventional method reaction time. Finally, the properties of Reutealis trisperma biodiesel fulfilled the ASTM D6751 and EN 14214 biodiesel standards with density, 892 kg/m3; pour point, −2 °C; cloud point, −1 °C; flash point, 206.5 °C; calorific value, 40.098 MJ/kg; and acid value, 0.26 mg KOH/

    Resource recovery from waste coffee grounds using ultrasonic-assisted technology for bioenergy production

    Full text link
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Biodiesel is a proven alternative fuel that can serve as a substitute for petroleum diesel due to its renewability, non-toxicity, sulphur-free nature and superior lubricity. Waste-based non-edible oils are studied as potential biodiesel feedstocks owing to the focus on the valorisation of waste products. Instead of being treated as municipal waste, waste coffee grounds (WCG) can be utilised for oil extraction, thereby recovering an energy source in the form of biodiesel. This study evaluates oil extraction from WCG using ultrasonic and Soxhlet techniques, followed by biodiesel conversion using an ultrasonic-assisted transesterification process. It was found that n-hexane was the most effective solvent for the oil extraction process and ultrasonic-assisted technology offers a 13.5% higher yield compared to the conventional Soxhlet extraction process. Solid-to-solvent ratio and extraction time of the oil extraction process from the dried waste coffee grounds (DWCG) after the brewing process was optimised using the response surface methodology (RSM). The results showed that predicted yield of 17.75 wt. % of coffee oil can be obtained using 1:30 w/v of the mass ratio of DWCG-ton-hexane and 34 min of extraction time when 32% amplitude was used. The model was verified by the experiment where 17.23 wt. % yield of coffee oil was achieved when the extraction process was carried out under optimal conditions. The infrared absorption spectrum analysis of WCG oil determined suitable functional groups for biodiesel conversion which was further treated using an ultrasonic-assisted transesterification process to successfully convert to biodiesel
    corecore