41 research outputs found
N-acetylglucosamine Regulates Virulence Properties in Microbial Pathogens
There is growing evidence that the sugar N-acetylglucosamine (GlcNAc) plays diverse roles in cell signaling pathways that impact the virulence properties of microbes and host cells. GlcNAc is already well known as a ubiquitous structural component at the cell surface that forms part of bacterial cell wall peptidoglycan, cell wall chitin in fungi and parasites, and extracellular matrix glycosaminoglycans of animal cells. Chitin and peptidoglycan have been previously linked to cell signaling as they can stimulate responses in plant and animal host cells [1–3]. Recent studies now indicate that GlcNAc released from these polymers can also activate cell signaling via several different mechanisms [4–6]. The role of these new GlcNAc signaling pathways in the regulation of virulence factors will be the focus of this review
Flavodoxin-Like Proteins Protect Candida albicans from Oxidative Stress and Promote Virulence
The fungal pathogen Candida albicans causes lethal systemic infections in humans. To better define how pathogens resist oxidative attack by the immune system, we examined a family of four Flavodoxin-Like Proteins (FLPs) in C. albicans. In agreement with previous studies showing that FLPs in bacteria and plants act as NAD(P)H quinone oxidoreductases, a C.albicans quadruple mutant lacking all four FLPs (pst1Δ, pst2Δ, pst3Δ, ycp4Δ) was more sensitive to benzoquinone. Interestingly, the quadruple mutant was also more sensitive to a variety of oxidants. Quinone reductase activity confers important antioxidant effects because resistance to oxidation was restored in the quadruple mutant by expressing either Escherichia coli wrbA or mammalian NQO1, two distinct types of quinone reductases. FLPs were detected at the plasma membrane in C. albicans, and the quadruple mutant was more sensitive to linolenic acid, a polyunsaturated fatty acid that can auto-oxidize and promote lipid peroxidation. These observations suggested that FLPs reduce ubiquinone (coenzyme Q), enabling it to serve as an antioxidant in the membrane. In support of this, a C. albicans coq3Δ mutant that fails to synthesize ubiquinone was also highly sensitive to oxidative stress. FLPs are critical for survival in the host, as the quadruple mutant was avirulent in a mouse model of systemic candidiasis under conditions where infection with wild type C. albicans was lethal. The quadruple mutant cells initially grew well in kidneys, the major site of C. albicans growth in mice, but then declined after the influx of neutrophils and by day 4 post-infection 33% of the mice cleared the infection. Thus, FLPs and ubiquinone are important new antioxidant mechanisms that are critical for fungal virulence. The potential of FLPs as novel targets for antifungal therapy is further underscored by their absence in mammalian cells. Author Summary
Oxidative damage is a fundamental problem for cells and a particular challenge for microbial pathogens, which require special mechanisms to resist the oxidative attack by the host immune system. We identified four proteins in the human fungal pathogen Candida albicansthat belong to a large family of enzymes in bacteria and plants that reduce quinone molecules to detoxify them. Interestingly, mutational studies in C. albicans showed that these enzymes also confer resistance to a wide range of oxidants, suggesting they may have broader impact by reducing the major quinone present in cells (ubiquinone or coenzyme Q). In support of this, we found that mutating the COQ3 gene to block ubiquinone synthesis rendered cells highly sensitive to oxidative stress, revealing that it plays a very important antioxidant function in addition to its well known role in energy metabolism. These quinone reductases play a critical role in vivo, as they were required for virulence in mouse infections studies. Since mammalian cells lack this type of quinone reductase, this difference could be exploited to develop much needed novel therapeutic approaches for fungal and bacterial pathogens
Flavodoxin-Like Proteins Protect Candida albicans from Oxidative Stress and Promote Virulence
The fungal pathogen Candida albicans causes lethal systemic infections in humans. To better define how pathogens resist oxidative attack by the immune system, we examined a family of four Flavodoxin-Like Proteins (FLPs) in C. albicans. In agreement with previous studies showing that FLPs in bacteria and plants act as NAD(P)H quinone oxidoreductases, a C.albicans quadruple mutant lacking all four FLPs (pst1Δ, pst2Δ, pst3Δ, ycp4Δ) was more sensitive to benzoquinone. Interestingly, the quadruple mutant was also more sensitive to a variety of oxidants. Quinone reductase activity confers important antioxidant effects because resistance to oxidation was restored in the quadruple mutant by expressing either Escherichia coli wrbA or mammalian NQO1, two distinct types of quinone reductases. FLPs were detected at the plasma membrane in C. albicans, and the quadruple mutant was more sensitive to linolenic acid, a polyunsaturated fatty acid that can auto-oxidize and promote lipid peroxidation. These observations suggested that FLPs reduce ubiquinone (coenzyme Q), enabling it to serve as an antioxidant in the membrane. In support of this, a C. albicans coq3Δ mutant that fails to synthesize ubiquinone was also highly sensitive to oxidative stress. FLPs are critical for survival in the host, as the quadruple mutant was avirulent in a mouse model of systemic candidiasis under conditions where infection with wild type C. albicans was lethal. The quadruple mutant cells initially grew well in kidneys, the major site of C. albicans growth in mice, but then declined after the influx of neutrophils and by day 4 post-infection 33% of the mice cleared the infection. Thus, FLPs and ubiquinone are important new antioxidant mechanisms that are critical for fungal virulence. The potential of FLPs as novel targets for antifungal therapy is further underscored by their absence in mammalian cells. Author Summary
Oxidative damage is a fundamental problem for cells and a particular challenge for microbial pathogens, which require special mechanisms to resist the oxidative attack by the host immune system. We identified four proteins in the human fungal pathogen Candida albicansthat belong to a large family of enzymes in bacteria and plants that reduce quinone molecules to detoxify them. Interestingly, mutational studies in C. albicans showed that these enzymes also confer resistance to a wide range of oxidants, suggesting they may have broader impact by reducing the major quinone present in cells (ubiquinone or coenzyme Q). In support of this, we found that mutating the COQ3 gene to block ubiquinone synthesis rendered cells highly sensitive to oxidative stress, revealing that it plays a very important antioxidant function in addition to its well known role in energy metabolism. These quinone reductases play a critical role in vivo, as they were required for virulence in mouse infections studies. Since mammalian cells lack this type of quinone reductase, this difference could be exploited to develop much needed novel therapeutic approaches for fungal and bacterial pathogens
N-Acetylglucosamine Regulates Morphogenesis and Virulence Pathways in Fungi
N-acetylglucosamine (GlcNAc) is being increasingly recognized for its ability to stimulate cell signaling. This amino sugar is best known as a component of cell wall peptidoglycan in bacteria, cell wall chitin in fungi and parasites, exoskeletons of arthropods, and the extracellular matrix of animal cells. In addition to these structural roles, GlcNAc is now known to stimulate morphological and stress responses in a wide range of organisms. In fungi, the model organisms Saccharomyces cerevisiae and Schizosaccharomyces pombe lack the ability to respond to GlcNAc or catabolize it, so studies with the human pathogen Candida albicans have been providing new insights into the ability of GlcNAc to stimulate cellular responses. GlcNAc potently induces C. albicans to transition from budding to filamentous hyphal growth. It also promotes an epigenetic switch from White to Opaque cells, which differ in morphology, metabolism, and virulence properties. These studies have led to new discoveries, such as the identification of the first eukaryotic GlcNAc transporter. Other results have shown that GlcNAc can induce signaling in C. albicans in two ways. One is to act as a signaling molecule independent of its catabolism, and the other is that its catabolism can cause the alkalinization of the extracellular environment, which provides an additional stimulus to form hyphae. GlcNAc also induces the expression of virulence genes in the C. albicans, indicating it can influence pathogenesis. Therefore, this review will describe the recent advances in understanding the role of GlcNAc signaling pathways in regulating C. albicans morphogenesis and virulence
INAUGURAL – DISSERTATION Zur Erlangung des Grades eines Doktors
Identification and molecular characterization of immunogenic antigens in Mycoplasma mycoides subsp. mycoides small colony typ
GlcNAc signaling pathways.
<p>(A) <i>C</i>. <i>albicans</i> grown in dextrose form budding cells (top) whereas growth in GlcNAc induces them to switch to the filamentous hyphal form (bottom). (B) Summary of three types of GlcNAc-regulated pathways. GlcNAc itself can transduce a signal to induce hyphal growth in <i>C</i>. <i>albicans</i> (red arrow). Catabolism of GlcNAc releases excess ammonia whose export alkalinizes the extracellular pH and can synergize with GlcNAc to induce hyphal growth and gene expression (blue arrow). In mammals and some microbes conversion of GlcNAc to the building block UDP-GlcNAc promotes changes in O-GlcNAc modification of intracellular proteins and N-linked glycosylation of cell surface proteins (green arrow).</p
Candida albicansrvs161Δ and rvs167Δ Endocytosis Mutants Are Defective in Invasion into the Oral Cavity
Oropharyngeal candidiasis (OPC) is a common fungal infection that is associated with severe morbidity. Another concern is that patients at risk for developing OPC often take long courses of antifungal drugs, which can lead to the emergence of drug-resistant C. albicans strains. We therefore identified nine mutants with defects in undergoing invasive hyphal growth in the oral cavity, increasing the number of genes known to be involved in OPC by more than 30%. The two strongest mutants, rvs161Δ and rvs167Δ, have defects in endocytosis. The rvsΔ mutants appear to have a specific defect in initiating invasive growth, as preinducing the cells to form hyphae prior to infection restored their ability to cause OPC. These results indicate that blocking endocytosis could have therapeutic value in preventing the initiation of OPC without leading to development of resistance against drugs currently used to treat fungal infections.Invasive growth in tissues by the human fungal pathogen Candida albicans is promoted by a switch from budding to hyphal morphogenesis that is stimulated by multiple environmental factors that can vary at different sites of infection. To identify genes that promote invasive growth in the oral cavity to cause oropharyngeal candidiasis (OPC), we first identified C. albicans mutants that failed to invade agar medium. Analysis of nine severely defective mutants in a mouse model of OPC revealed that the strongest defects were seen for the rvs161Δ and rvs167Δ mutants, which lack amphiphysin proteins needed for endocytosis. The rvsΔ mutants initially adhered to the tongue but failed to invade efficiently and were lost from the oral cavity. Previous studies indicated that rvsΔ mutants formed filamentous hyphae in the kidney albeit with morphological abnormalities, suggesting that the rvsΔ mutants were influenced by factors that vary at different sites of infection. Consistent with this, increasing concentrations of CO2, an inducer of hyphal growth that is more abundant in internal organs than air, partially rescued the invasive-growth defects of the rvsΔ mutants in vitro. Interestingly, preinduction of the rvsΔ mutants to form hyphae prior to introduction into the oral cavity restored their ability to cause OPC, identifying a key role for endocytosis in initiating invasive hyphal growth. These results highlight the influence of distinct environmental factors in promoting invasive hyphal growth in the oral cavity and indicate that blocking endocytosis could have therapeutic value in preventing the initiation of OPC
Modulating Host Signaling Pathways to Promote Resistance to Infection by Candida albicans
Candida albicans is a common human fungal pathogen capable of causing serious systemic infections that can progress to become lethal. Current therapeutic approaches have limited effectiveness, especially once a systemic infection is established, in part due to the lack of an effective immune response. Boosting the immune response to C. albicans has been the goal of immunotherapy, but it has to be done selectively to prevent deleterious hyperinflammation (sepsis). Although an efficient inflammatory response is necessary to fight infection, the typical response to C. albicans results in collateral damage to tissues thereby exacerbating the pathological effects of infection. For this reason, identifying specific ways of modulating the immune system holds promise for development of new improved therapeutic approaches. This review will focus on recent studies that provide insight using mutant strains of mice that are more resistant to bloodstream infection by C. albicans. These mice are deficient in signal transduction proteins including the Jnk1 MAP kinase, the Cbl-b E3 ubiquitin ligase, or the Sts phosphatases. Interestingly, the mutant mice display a different response to C. albicans that results in faster clearance of infection without hyper-inflammation and collateral damage. A common underlying theme between the resistant mouse strains is loss of negative regulatory proteins that are known to restrain activation of cell surface receptor-initiated signaling cascades. Understanding the cellular and molecular mechanisms that promote resistance to C. albicans in mice will help to identify new approaches for improving antifungal therapy
<i>N</i>-acetylglucosamine (GlcNAc) Triggers a Rapid, Temperature-Responsive Morphogenetic Program in Thermally Dimorphic Fungi
<div><p>The monosaccharide <i>N</i>-acetylglucosamine (GlcNAc) is a major component of microbial cell walls and is ubiquitous in the environment. GlcNAc stimulates developmental pathways in the fungal pathogen <i>Candida albicans</i>, which is a commensal organism that colonizes the mammalian gut and causes disease in the setting of host immunodeficiency. Here we investigate GlcNAc signaling in thermally dimorphic human fungal pathogens, a group of fungi that are highly evolutionarily diverged from <i>C. albicans</i> and cause disease even in healthy individuals. These soil organisms grow as polarized, multicellular hyphal filaments that transition into a unicellular, pathogenic yeast form when inhaled by a human host. Temperature is the primary environmental cue that promotes reversible cellular differentiation into either yeast or filaments; however, a shift to a lower temperature <i>in vitro</i> induces filamentous growth in an inefficient and asynchronous manner. We found GlcNAc to be a potent and specific inducer of the yeast-to-filament transition in two thermally dimorphic fungi, <i>Histoplasma capsulatum</i> and <i>Blastomyces dermatitidis</i>. In addition to increasing the rate of filamentous growth, micromolar concentrations of GlcNAc induced a robust morphological transition of <i>H. capsulatum</i> after temperature shift that was independent of GlcNAc catabolism, indicating that fungal cells sense GlcNAc to promote filamentation. Whole-genome expression profiling to identify candidate genes involved in establishing the filamentous growth program uncovered two genes encoding GlcNAc transporters, <i>NGT1</i> and <i>NGT2</i>, that were necessary for <i>H. capsulatum</i> cells to robustly filament in response to GlcNAc. Unexpectedly, <i>NGT1</i> and <i>NGT2</i> were important for efficient <i>H. capsulatum</i> yeast-to-filament conversion in standard glucose medium, suggesting that Ngt1 and Ngt2 monitor endogenous levels of GlcNAc to control multicellular filamentous growth in response to temperature. Overall, our work indicates that GlcNAc functions as a highly conserved cue of morphogenesis in fungi, which further enhances the significance of this ubiquitous sugar in cellular signaling in eukaryotes.</p></div