3 research outputs found

    A new sterilization technique of bovine pericardial biomaterial using microwave radiation

    Get PDF
    Bioprosthetic valves created from chemically treated natural tissues such as bovine pericardial biomaterial are used as heart valve scaffolds. Methods currently available for sterilization of biomaterial for transplantation include the application of gamma radiation and chemical sterilants. These techniques, however, can be problematic because they can be expensive and lead to a reduction in tissue integrity. Therefore, improved techniques are needed that are cost effective and do not disrupt the physical properties, functionality, and lifespan of the valvular leaflets. This study examined a novel technique using nonthermalmicrowave radiation that could lead to the inactivation of bacteria in bovine pericardial biomaterial without compromising valve durability. Two common pathogenic species of bacteria, Escherichia coli and Staphylococcus aureus, were used as test microorganisms. Optimized microwave parameters were used to determine whether inactivation of pathogenic bacteria from bovine pericardium could be achieved. In addition, the effect of microwave sterilization on tissue integrity was examined. The mechanical properties (assessed using dynamic mechanical analysis) and tensile strength testing (using a Universal Tensile Tester) as well as thermal analysis (using thermogravimetric analysis and differential scanning calorimetry) indicated that microwave sterilization did not compromise the functionality of bovine pericardial biomaterial. Scanning electron microscopy imaging and cytotoxicity testing also confirmed that the structure and biocompatibility of transplant biomaterial remained unaltered after the sterilization process. Results from the application of this newmicrowave (MW) sterilization technique to bovine pericardium showed that nearcomplete inactivation of the contaminant bacteria was achieved. It is concluded that nonthermal inactivation of pathogenic bacteria from bovine pericardial biomaterial could be achieved using microwave radiation

    Review of the specific effects of microwave radiation on bacterial cells

    No full text
    The aim of the present review was to evaluate the literature suggesting that consideration be given to the existence of specific microwave (MW) effects on prokaryotic microorganisms; that is, effects on organisms that cannot be explained by virtue of temperature increases alone. This review considered a range of the reported effects on cellular components; including membranes, proteins, enzyme activity as well as cell death. It is concluded that the attribution of such effects to non-thermal mechanisms is not justified due to poor control protocols and because of the possibility that an unmeasurable thermal force, relating to instantaneous temperature (T (i)) that occurs during MW processing, has not been taken into account. However, due to this lack of control over T (i), it also follows that it cannot be concluded that these effects are not \u27non-thermal\u27. Due to this ambiguity, it is proposed that internal \u27micro\u27-thermal effects may occur that are specific to MW radiation, given its inherent unusual energy deposition patterning
    corecore