1,178 research outputs found

    Photoluminescence and spectral switching of single CdSe/ZnS colloidal nanocrystals in poly(methyl methacrylate)

    Full text link
    Emission from single CdSe nanocrystals in PMMA was investigated. A fraction of the nanocrystals exhibiting switching between two energy states, which have similar total intensities, but distinctly different spectra were observed. We found that the spectral shift characteristic frequency increases with the pump power. By using the dynamic shift in the spectral position of emission peaks, we were able to correlate peaks from the same nanocrystal. The measured correlation is consistent with assignment of low energy lines to phonon replicas.Comment: 5 pages, 4 figure

    Eigenvalue spectrum for single particle in a spheroidal cavity: A Semiclassical approach

    Full text link
    Following the semiclassical formalism of Strutinsky et al., we have obtained the complete eigenvalue spectrum for a particle enclosed in an infinitely high spheroidal cavity. Our spheroidal trace formula also reproduces the results of a spherical billiard in the limit η1.0\eta\to1.0. Inclusion of repetition of each family of the orbits with reference to the largest one significantly improves the eigenvalues of sphere and an exact comparison with the quantum mechanical results is observed upto the second decimal place for kR07kR_{0}\geq{7}. The contributions of the equatorial, the planar (in the axis of symmetry plane) and the non-planar(3-Dimensional) orbits are obtained from the same trace formula by using the appropriate conditions. The resulting eigenvalues compare very well with the quantum mechanical eigenvalues at normal deformation. It is interesting that the partial sum of equatorial orbits leads to eigenvalues with maximum angular momentum projection, while the summing of planar orbits leads to eigenvalues with Lz=0L_z=0 except for L=1. The remaining quantum mechanical eigenvalues are observed to arise from the 3-dimensional(3D) orbits. Very few spurious eigenvalues arise in these partial sums. This result establishes the important role of 3D orbits even at normal deformations.Comment: 17 pages, 7 ps figure

    Optically-controlled single-qubit rotations in self-assembled InAs quantum dots

    Full text link
    We present a theory of the optical control of the spin of an electron in an InAs quantum dot. We show how two Raman-detuned laser pulses can be used to obtain arbitrary single-qubit rotations via the excitation of an intermediate trion state. Our theory takes into account a finite in-plane hole gg-factor and hole-mixing. We show that such rotations can be performed to high fidelities with pulses lasting a few tens of picoseconds.Comment: 6 pages, 4 figures; minor changes, J-ref adde

    Indirect coupling between spins in semiconductor quantum dots

    Full text link
    The optically induced indirect exchange interaction between spins in two quantum dots is investigated theoretically. We present a microscopic formulation of the interaction between the localized spin and the itinerant carriers including the effects of correlation, using a set of canonical transformations. Correlation effects are found to be of comparable magnitude as the direct exchange. We give quantitative results for realistic quantum dot geometries and find the largest couplings for one dimensional systems.Comment: 4 pages, 3 figure

    Sonic hedgehog regulates the proliferation, differentiation, and migration of enteric neural crest cells in gut

    Get PDF
    Enteric neural crest cells (NCCs) migrate and colonize the entire gut and proliferate and differentiate into neurons and glia of the enteric nervous system in vertebrate embryos. We have investigated the mitogenic and morphogenic functions of Sonic hedgehog (Shh) on enteric NCCs in cell and organ culture. Enteric NCCs expressed Shh receptor Patched and transcripts encoding the Shh signal transducer (Gli1). Shh promoted the proliferation and inhibited the differentiation of NCCs. The pro-neurogenic effect of glial cell line-derived neurotrophic factor (GDNF) on NCCs was abolished by Shh. In gut explants, NCCs migrated from the explants onto the adjacent substratum if GDNF was added, whereas addition of Shh abolished this migration. Neuronal differentiation and coalescence of neural crest-derived cells into myenteric plexuses in explants was repressed by the addition of Shh. Our data suggest that Shh controls the proliferation and differentiation of NCCs and modulates the responsiveness of NCCs toward GDNF inductions.published_or_final_versio

    Mapping loci influencing blood pressure in the Framingham pedigrees using model-free LOD score analysis of a quantitative trait

    Get PDF
    This paper presents a method of performing model-free LOD-score based linkage analysis on quantitative traits. It is implemented in the QMFLINK program. The method is used to perform a genome screen on the Framingham Heart Study data. A number of markers that show some support for linkage in our study coincide substantially with those implicated in other linkage studies of hypertension. Although the new method needs further testing on additional real and simulated data sets we can already say that it is straightforward to apply and may offer a useful complementary approach to previously available methods for the linkage analysis of quantitative traits

    Many-body diagrammatic expansion in a Kohn-Sham basis: implications for Time-Dependent Density Functional Theory of excited states

    Full text link
    We formulate diagrammatic rules for many-body perturbation theory which uses Kohn-Sham (KS) Green's functions as basic propagators. The diagram technique allows to study the properties of the dynamic nonlocal exchange-correlation (xc) kernel fxcf_{xc}. We show that the spatial non-locality of fxcf_{xc} is strongly frequency-dependent. In particular, in extended systems the non-locality range diverges at the excitation energies. This divergency is related to the discontinuity of the xc potential.Comment: 4 RevTeX pages including 3 eps figures, submitted to Phys. Rev. Lett; revised version with new reference

    Ultrafast demagnetization in the sp-d model: a theoretical study

    Full text link
    We propose and analyze a theoretical model of ultrafast light-induced magnetization dynamics in systems of localized spins that are coupled to carriers' spins by sp-d exchange interaction. A prominent example of a class of materials falling into this category are ferromagnetic (III,Mn)V semiconductors, in which ultrafast demagnetization has been recently observed. In the proposed model light excitation heats up the population of carriers, taking it out of equilibrium with the localized spins. This triggers the process of energy and angular momentum exchange between the two spin systems, which lasts for the duration of the energy relaxation of the carriers. We derive the Master equation for the density matrix of a localized spin interacting with the hot carriers and couple it with a phenomenological treatment of the carrier dynamics. We develop a general theory within the sp-d model and we apply it to the ferromagnetic semiconductors, taking into account the valence band structure of these materials. We show that the fast spin relaxation of the carriers can sustain the flow of polarization between the localized and itinerant spins leading to significant demagnetization of the localized spin system, observed in (III,Mn)V materials.Comment: 15 pages, 8 figure

    Kondo Insulator: p-wave Bose Condensate of Excitons

    Full text link
    In the Anderson lattice model for a mixed-valent system, the dfd-f hybridization can possess a pp-wave symmetry. The strongly-correlated insulating phase in the mean-field approximation is shown to be a pp-wave Bose condensate of excitons with a spontaneous lattice deformation. We study the equilibrium and linear response properties across the insulator-metal transition. Our theory supports the empirical correlation between the lattice deformation and the magnetic susceptibility and predicts measurable ultrasonic and high-frequency phonon behavior in mixed-valent semiconductors.Comment: 5 pages, 3 encapsulated PostScript figure

    Coherent transport in homojunction between excitonic insulator and semimetal

    Full text link
    From the solution of a two-band model, we predict that the thermal and electrical transport across the junction of a semimetal and an excitonic insulator will exhibit high resistance behavior and low entropy production at low temperatures, distinct from a junction of a semimetal and a normal semiconductor. This phenomenon, ascribed to the dissipationless exciton flow which dominates over the charge transport, is based on the much longer length scale of the change of the effective interface potential for electron scattering due to the coherence of the condensate than in the normal state.Comment: RevTeX 4.0, 13 pages, 5 b/w figures, 1 colour figure, 1 table. Version modified with respect to the original, which will appear in Physical Review Letters. This version includes the supplementary (EPAPS) material as an Appendix, and it is slightly longer than the accepted version (more text and references
    corecore