29 research outputs found

    Cloacal foam gland in quail Coturnix-coturnix

    No full text

    Dogs and mankind: Coevolution on the move - An update

    No full text

    The hawk/goose story: The classical ethological experiments of Lorenz and Tinbergen, revisited

    No full text

    Analysis of distress calls of chicken x pheasant hybrids

    No full text

    Learning fine-tunes a specific response of nestlings to the parental alarm calls of their own species.

    No full text
    Parent birds often give alarm calls when a predator approaches their nest. However, it is not clear whether these alarms function to warn nestlings, nor is it known whether nestling responses are species-specific. The parental alarms of reed warblers, Acrocephalus scirpaceus ("churr"), dunnocks, Prunella modularis ("tseep"), and robins, Erithacus rubecula ("seee") are very different. Playback experiments revealed that nestlings of all three species ceased begging only in response to conspecific alarm calls. These differences between species in response are not simply a product of differences in raising environment, because when newly hatched dunnocks and robins were cross-fostered to nests of the other two species, they did not develop a response to their foster species' alarms. Instead, they still responded specifically to their own species' alarms. However, their response was less strong than that of nestlings raised normally by their own species. We suggest that, as in song development, a neural template enables nestlings to recognize features of their own species' signals from a background of irrelevant sounds, but learning then fine-tunes the response to reduce recognition errors

    Mobbing calls signal predator category in a kin group-living bird species

    No full text
    Many prey species gather together to approach and harass their predators despite the associated risks. While mobbing, prey usually utter calls and previous experiments have demonstrated that mobbing calls can convey information about risk to conspecifics. However, the risk posed by predators also differs between predator categories. The ability to communicate predator category would be adaptive because it would allow other mobbers to adjust their risk taking. I tested this idea in Siberian jays Perisoreus infaustus, a group-living bird species, by exposing jay groups to mounts of three hawk and three owl species of varying risks. Groups immediately approached to mob the mount and uttered up to 14 different call types. Jays gave more calls when mobbing a more dangerous predator and when in the presence of kin. Five call types were predator-category-specific and jays uttered two hawk-specific and three owl-specific call types. Thus, this is one of the first studies to demonstrate that mobbing calls can simultaneously encode information about both predator category and the risk posed by a predator. Since antipredator calls of Siberian jays are known to specifically aim at reducing the risk to relatives, kin-based sociality could be an important factor in facilitating the evolution of predator-category-specific mobbing calls
    corecore