20 research outputs found

    Concept for estimation of secondary and tertiary biomass from primary production

    Get PDF
    Fixation of inorganic carbon to organic carbon in the ocean is driven purely by phytoplankton. Phytoplankton carbon fixation plays an important role in maintaining the quasi steady state level of atmospheric CO2. Relative contribution of marine primary productivity to global photosynthetic production is between 10 and 50%. Magnitude ranges from 20 to 55 Gt of C/ year (Ryther 1969, Smith et al., 1983, Walsh 1984 and Martin 1992). Ocean-atmospheric coupled climate models predict changes in the ocean circulation and hypothesize that changes in the ocean circulation will stimulate phytoplankton biomass production in the nutrient depleted areas in the open ocean (Roemmich & Wunch 1985). The effect on atmospheric CO2 is uncertain because the relationship between the enhanced primary production and air sea exchange of CO2 is not understood. The challenge is to study the magnitude and variability of Primary productivity, its time scales and changes in atmospheric forcing and upscale it into secondary and tertiary productivity

    Genetic stock characterization of fish using molecular markers

    Get PDF
    Accurate Identification of genetic resources is necessary for detecting new species and varieties for products of commercial value. Fish, as a group, apart from their economic value from a biodiversity viewpoint, have the highest species diversity among all vertebrate taxa. They exhibit enormous diversity in size, shape, biology and in the habitats they occupy. In terms of habitat diversity, fishes live in almost all conceivable aquatic habitats, ranging from Antarctic waters to desert springs. Of the 62,305 species of vertebrates recognized world over, 34,090 (nearly 52%) are valid fish species; a great majority of them (97 %) are bony fishes and the remaining (3 %) are cartilaginous (sharks and rays) and jawless fishes (lampreys and hagfishes). Further, on an average, 300 new fish species are described each year, and global surveys indicate that there could well be at least 5,000 species more to be discovered

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Prophylactic Cranial Irradiation Following Surgical Resection of Early-Stage Small-Cell Lung Cancer: A Review of the Literature

    No full text
    With increasing use of low-dose screening CT scans, the diagnosis of early-stage small-cell lung cancer (SCLC) without evidence of mediastinal nodal or distant metastasis is likely to become more common, but the role of adjuvant therapies such as prophylactic cranial irradiation (PCI) are not well understood in this population. We performed a review of the literature pertaining to the impact of PCI in patients who underwent surgical resection of early-stage SCLC. Four studies were identified that were pertinent including three single-institution retrospective analyses and a National Cancer Database analysis. Based upon these studies, we estimate the rate of brain metastases to be 10–15% for Stage I and 15–25% for Stage II disease without PCI. However, the impact of PCI on the development of brain metastases and its ultimate impact on overall survival were not consistent across these studies. In summary, there is sparse evidence to guide recommendations for PCI following resection of early-stage SCLC. While it may be reasonable to offer PCI to maximize likelihood of cure, alternative strategies such as observation with close imaging follow-up can also be considered for the appropriate patient given the known neurocognitive side effects of PCI
    corecore