13 research outputs found
The Photosynthetic Pancreas: From Fantasy to Reality
Islets of Langerhans implantation is a viable method to treat type I diabetes. Unfortunately, during islets isolation their vascular system is disrupted, and they need external supply of oxygen and other nutrients. A photosynthetic bioartificial device was constructed to support the oxygen consumption of the islets and to treat type I diabetes. The bioartificial device is built in layers where the core is an illumination module composed of a LED array and a light guide. The next layer is immobilized photosynthetic organism (Synechococcus lividus). An oxygen-permeable silicon/Teflon membrane separates the photosynthetic layer from the islets of Langerhans layer. This layer is protected from the immune system of the body by a porous Teflon membrane. The device is powered by batteries that supply electricity to a LED array. The oxygen produced by S. lividus is consumed by implanted islets of Langerhans that produce insulin and allow the reversal of diabetes in the patient. In this chapter, we demonstrate the ability of S. lividus to produce oxygen after being implanted for prolonged periods and eventually the ability of the device containing S. lividus and the islets of Langerhans to reverse diabetes for 10 days. To achieve this task, we developed improved media to grow cyanobacteria and, inter alia, developed a method to disperse light uniformly and in very short distances
Specific Compositions of Cannabis sativa Compounds Have Cytotoxic Activity and Inhibit Motility and Colony Formation of Human Glioblastoma Cells In Vitro
Glioblastoma multiforme (GBM) is the most lethal subtype of glioma. Cannabis sativa is used for the treatment of various medical conditions. Around 150 phytocannabinoids have been identified in C. sativa, among them Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) that trigger GBM cell death. However, the optimal combinations of cannabis molecules for anti-GBM activity are unknown. Chemical composition was determined using high-performance liquid chromatography (HPLC) and gas chromatography mass spectrometry (GC/MS). Cytotoxic activity was determined by XTT and lactate dehydrogenase (LDH) assays and apoptosis and cell cycle by fluorescence-activated cell sorting (FACS). F-actin structures were observed by confocal microscopy, gene expression by quantitative PCR, and cell migration and invasion by scratch and transwell assays, respectively. Fractions of a high-THC cannabis strain extract had significant cytotoxic activity against GBM cell lines and glioma stem cells derived from tumor specimens. A standard mix (SM) of the active fractions F4 and F5 induced apoptosis and expression of endoplasmic reticulum (ER)-stress associated-genes. F4 and F5 inhibited cell migration and invasion, altered cell cytoskeletons, and inhibited colony formation in 2 and 3-dimensional models. Combinations of cannabis compounds exert cytotoxic, anti-proliferative, and anti-migratory effects and should be examined for efficacy on GBM in pre-clinical studies and clinical trials
Long-term viability and function of transplanted islets macroencapsulated at high density are achieved by enhanced oxygen supply
Transplantation of encapsulated islets can cure diabetes without immunosuppression, but oxygen supply limitations can cause failure. We investigated a retrievable macroencapsulation device wherein islets are encapsulated in a planar alginate slab and supplied with exogenous oxygen from a replenishable gas chamber. Translation to clinically-useful devices entails reduction of device size by increasing islet surface density, which requires increased gas chamber pO Here we show that islet surface density can be substantially increased safely by increasing gas chamber pO to a supraphysiological level that maintains all islets viable and functional. These levels were determined from measurements of pO profiles in islet-alginate slabs. Encapsulated islets implanted with surface density as high as 4,800 islet equivalents/cm in diabetic rats maintained normoglycemia for more than 7 months and provided near-normal intravenous glucose tolerance tests. Nearly 90% of the original viable tissue was recovered after device explantation. Damaged islets failed after progressively shorter times. The required values of gas chamber pO were predictable from a mathematical model of oxygen consumption and diffusion in the device. These results demonstrate feasibility of developing retrievable macroencapsulated devices small enough for clinical use and provide a firm basis for design of devices for testing in large animals and humans
Anti-Cancer Activity of <i>Cannabis sativa</i> Phytocannabinoids: Molecular Mechanisms and Potential in the Fight against Ovarian Cancer and Stem Cells
Ovarian cancer (OC) is the most lethal gynecological malignancy, with about 70% of cases diagnosed only at an advanced stage. Cannabis sativa, which produces more than 150 phytocannabinoids, is used worldwide to alleviate numerous symptoms associated with various medical conditions. Recently, studies across a range of cancer types have demonstrated that the phytocannabinoids Δ9-trans-tetrahydrocannabinol (THC) and cannabidiol (CBD) have anti-cancer activity in vitro and in vivo, but also the potential to increase other drugs’ adverse effects. THC and CBD act via several different biological and signaling pathways, including receptor-dependent and receptor-independent pathways. However, very few studies have examined the effectiveness of cannabis compounds against OC. Moreover, little is known about the effectiveness of cannabis compounds against cancer stem cells (CSCs) in general and OC stem cells (OCSCs) in particular. CSCs have been implicated in tumor initiation, progression, and invasion, as well as tumor recurrence, metastasis, and drug resistance. Several hallmarks and concepts describe CSCs. OCSCs, too, are characterized by several markers and specific drug-resistance mechanisms. While there is no peer-reviewed information regarding the effect of cannabis and cannabis compounds on OCSC viability or development, cannabis compounds have been shown to affect genetic pathways and biological processes related to CSCs and OCSCs. Based on evidence from other cancer-type studies, the use of phytocannabinoid-based treatments to disrupt CSC homeostasis is suggested as a potential intervention to prevent chemotherapy resistance. The potential benefits of the combination of chemotherapy with phytocannabinoid treatment should be examined in ovarian cancer patients
Ultra-Orthodox female student teachers' motivation to learn and teach global education
Highlights:
– GE can be embraced by distinct populations with highly religious views.
– UOSTs' motivation toward GE is related to competitive-instrumental, social-justice, and personal factors.
– UOSTs prioritize local orientation toward GE, over global perspectives.
– UOSTs seem to assess the compatibility of GE with the traditions and norms of their own community.
– GE may be perceived as multidirectional and multidimensional rather than a top-down hierarchy
Â
Purpose: This study aims to identify factors that motivate ultra-Orthodox female student-teachers to learn and teach from a global education perspective. Uncovering these factors may inform the discourse on integrating global orientations into education systems.
Design/methodology/approach: The study adopts the broad theoretical idea of global education while employing quantitative analysis.
Findings: Data obtained from 115 participants yielded three factors salient to learning GE: (1) competitive-instrumental; (2) social-justice related; and (3) personal. Motivation to teach GE was found to align with two main approaches, one locally oriented and the other globally oriented.
Research limitations/implications: As the study adopted a quantitative methodology, future research should also elucidate our findings using qualitative methods.
Practical implications: Stakeholders who wish to promote global education should consider that the participants’ overall disposition is congenial to global education; however, they interpret this notion in local and personal terms rather than as a global, proactive framework
‘Nice to Meet You Again’: When Heutagogy Met Blended Learning in Teacher Education, Post-Pandemic Era
Heutagogy and blended learning (BL) are core concepts in the educational discourse post-COVID-19. Conducting a mixed-methods study, we investigate meeting points between heutagogy principles and BL in the context of curricular change in the academic timetable of teacher education college, where pre-COVID most courses have been taught face-to-face (F2F). At present, teacher educators and students meet F2F for three weeks, followed by a week of remote learning, combining synchronous and asynchronous pedagogies. Data have been collected by a closed-ended questionnaire and two focus groups, involving altogether 76 lecturers and 553 students. Findings indicate that heutagogy has been applied in all facets of BL, rather than only with online or digital technological components. This study explores a bottom-up growth of heutagogy expressions in BL at three meeting points. When the core facets of heutagogy principles have been identified, there has been a predominance of the students’ agency and life-long learners, together with facets such as a non-linear learning and capability development that have been underrepresented. This study contributes to the research field of heutagogy in teacher education as it identifies the meaning and the way a structural change in the curriculum can constitute an accelerator and catalyst when implementing heutagogy in practice
Phytocannabinoids Act Synergistically with Non-Steroidal Anti-Inflammatory Drugs Reducing Inflammation in 2D and 3D In Vitro Models
Lung inflammation is associated with elevated pro-inflammatory cytokines and chemokines. Treatment with FCBD:std (standard mix of cannabidiol [CBD], cannabigerol [CBG] and tetrahydrocannabivarin [THCV]) leads to a marked reduction in the inflammation of alveolar epithelial cells, but not in macrophages. In the present study, the combined anti-inflammatory effect of FCBD:std with two corticosteroids (dexamethasone and budesonide) and two non-steroidal anti-inflammatory drugs (NSAID; ibuprofen and diclofenac), was examined. Enzyme-linked immunosorbent assay (ELISA) was used to determine protein levels. Gene expression was determined by quantitative real-time PCR. Inhibition of cyclo-oxygenase (COX) activity was determined in vitro. FCBD:std and diclofenac act synergistically, reducing IL-8 levels in macrophages and lung epithelial cells. FCBD:std plus diclofenac also reduced IL-6, IL-8 and CCL2 expression levels in co-cultures of macrophages and lung epithelial cells, in 2D and 3D models. Treatment by FCBD:std and/or NSAID reduced COX-1 and COX-2 gene expression but not their enzymatic activity. FCBD:std and diclofenac exhibit synergistic anti-inflammatory effects on macrophages and lung epithelial cells, yet this combined activity needs to be examined in pre-clinical studies and clinical trials
Phytocannabinoid Compositions from Cannabis Act Synergistically with PARP1 Inhibitor against Ovarian Cancer Cells In Vitro and Affect the Wnt Signaling Pathway
Ovarian cancer (OC) is the single most lethal gynecologic malignancy. Cannabis sativa is used to treat various medical conditions, and is cytotoxic to a variety of cancer types. We sought to examine the effectiveness of different combinations of cannabis compounds against OC. Cytotoxic activity was determined by XTT assay on HTB75 and HTB161 cell lines. Apoptosis was determined by flow cytometry. Gene expression was determined by quantitative PCR and protein localization by confocal microscopy. The two most active fractions, F5 and F7, from a high Δ9–tetrahydrocannabinol (THC) cannabis strain extract, and their standard mix (SM), showed cytotoxic activity against OC cells and induced cell apoptosis. The most effective phytocannabinoid combination was THC+cannabichromene (CBC)+cannabigerol (CBG). These fractions acted in synergy with niraparib, a PARP inhibitor, and were ~50-fold more cytotoxic to OC cells than to normal keratinocytes. The F7 and/or niraparib treatments altered Wnt pathway-related gene expression, epithelial–mesenchymal transition (EMT) phenotype and β-catenin cellular localization. The niraparib+F7 treatment was also effective on an OC patient’s cells. Given the fact that combinations of cannabis compounds and niraparib act in synergy and alter the Wnt signaling pathway, these phytocannabinoids should be examined as effective OC treatments in further pre-clinical studies and clinical trials
Cannabis-Derived Compounds Cannabichromene and Δ9-Tetrahydrocannabinol Interact and Exhibit Cytotoxic Activity against Urothelial Cell Carcinoma Correlated with Inhibition of Cell Migration and Cytoskeleton Organization
Cannabis sativa contains more than 500 constituents, yet the anticancer properties of the vast majority of cannabis compounds remains unknown. We aimed to identify cannabis compounds and their combinations presenting cytotoxicity against bladder urothelial carcinoma (UC), the most common urinary system cancer. An XTT assay was used to determine cytotoxic activity of C. sativa extracts on T24 and HBT-9 cell lines. Extract chemical content was identified by high-performance liquid chromatography (HPLC). Fluorescence-activated cell sorting (FACS) was used to determine apoptosis and cell cycle, using stained F-actin and nuclei. Scratch and transwell assays were used to determine cell migration and invasion, respectively. Gene expression was determined by quantitative Polymerase chain reaction (PCR). The most active decarboxylated extract fraction (F7) of high-cannabidiol (CBD) C. sativa was found to contain cannabichromene (CBC) and Δ9-tetrahydrocannabinol (THC). Synergistic interaction was demonstrated between CBC + THC whereas cannabinoid receptor (CB) type 1 and type 2 inverse agonists reduced cytotoxic activity. Treatments with CBC + THC or CBD led to cell cycle arrest and cell apoptosis. CBC + THC or CBD treatments inhibited cell migration and affected F-actin integrity. Identification of active plant ingredients (API) from cannabis that induce apoptosis and affect cell migration in UC cell lines forms a basis for pre-clinical trials for UC treatment