1,373 research outputs found

    Fluctuations of the local density of states probe localized surface plasmons on disordered metal films

    Full text link
    We measure the statistical distribution of the local density of optical states (LDOS) on disordered semi-continuous metal films. We show that LDOS fluctuations exhibit a maximum in a regime where fractal clusters dominate the film surface. These large fluctuations are a signature of surface-plasmon localization on the nanometer scale

    Statistics of level spacing of geometric resonances in random binary composites

    Full text link
    We study the statistics of level spacing of geometric resonances in the disordered binary networks. For a definite concentration pp within the interval [0.2,0.7][0.2,0.7], numerical calculations indicate that the unfolded level spacing distribution P(t)P(t) and level number variance ÎŁ2(L)\Sigma^2(L) have the general features. It is also shown that the short-range fluctuation P(t)P(t) and long-range spectral correlation ÎŁ2(L)\Sigma^2(L) lie between the profiles of the Poisson ensemble and Gaussion orthogonal ensemble (GOE). At the percolation threshold pcp_c, crossover behavior of functions P(t)P(t) and % \Sigma^2(L) is obtained, giving the finite size scaling of mean level spacing ÎŽ\delta and mean level number nn, which obey the scaling laws, % \delta=1.032 L ^{-1.952} and n=0.911L1.970n=0.911L^{1.970}.Comment: 11 pages, 7 figures,submitted to Phys. Rev.

    Non-trivial fixed point structure of the two-dimensional +-J 3-state Potts ferromagnet/spin glass

    Full text link
    The fixed point structure of the 2D 3-state random-bond Potts model with a bimodal (±\pmJ) distribution of couplings is for the first time fully determined using numerical renormalization group techniques. Apart from the pure and T=0 critical fixed points, two other non-trivial fixed points are found. One is the critical fixed point for the random-bond, but unfrustrated, ferromagnet. The other is a bicritical fixed point analogous to the bicritical Nishimori fixed point found in the random-bond frustrated Ising model. Estimates of the associated critical exponents are given for the various fixed points of the random-bond Potts model.Comment: 4 pages, 2 eps figures, RevTex 3.0 format requires float and epsfig macro

    Crossover and self-averaging in the two-dimensional site-diluted Ising model

    Full text link
    Using the newly proposed probability-changing cluster (PCC) Monte Carlo algorithm, we simulate the two-dimensional (2D) site-diluted Ising model. Since we can tune the critical point of each random sample automatically with the PCC algorithm, we succeed in studying the sample-dependent Tc(L)T_c(L) and the sample average of physical quantities at each Tc(L)T_c(L) systematically. Using the finite-size scaling (FSS) analysis for Tc(L)T_c(L), we discuss the importance of corrections to FSS both in the strong-dilution and weak-dilution regions. The critical phenomena of the 2D site-diluted Ising model are shown to be controlled by the pure fixed point. The crossover from the percolation fixed point to the pure Ising fixed point with the system size is explicitly demonstrated by the study of the Binder parameter. We also study the distribution of critical temperature Tc(L)T_c(L). Its variance shows the power-law LL dependence, L−nL^{-n}, and the estimate of the exponent nn is consistent with the prediction of Aharony and Harris [Phys. Rev. Lett. {\bf 77}, 3700 (1996)]. Calculating the relative variance of critical magnetization at the sample-dependent Tc(L)T_c(L), we show that the 2D site-diluted Ising model exhibits weak self-averaging.Comment: 6 pages including 6 eps figures, RevTeX, to appear in Phys. Rev.

    The two-dimensional random-bond Ising model, free fermions and the network model

    Full text link
    We develop a recently-proposed mapping of the two-dimensional Ising model with random exchange (RBIM), via the transfer matrix, to a network model for a disordered system of non-interacting fermions. The RBIM transforms in this way to a localisation problem belonging to one of a set of non-standard symmetry classes, known as class D; the transition between paramagnet and ferromagnet is equivalent to a delocalisation transition between an insulator and a quantum Hall conductor. We establish the mapping as an exact and efficient tool for numerical analysis: using it, the computational effort required to study a system of width MM is proportional to M3M^{3}, and not exponential in MM as with conventional algorithms. We show how the approach may be used to calculate for the RBIM: the free energy; typical correlation lengths in quasi-one dimension for both the spin and the disorder operators; even powers of spin-spin correlation functions and their disorder-averages. We examine in detail the square-lattice, nearest-neighbour ±J\pm J RBIM, in which bonds are independently antiferromagnetic with probability pp, and ferromagnetic with probability 1−p1-p. Studying temperatures T≄0.4JT\geq 0.4J, we obtain precise coordinates in the p−Tp-T plane for points on the phase boundary between ferromagnet and paramagnet, and for the multicritical (Nishimori) point. We demonstrate scaling flow towards the pure Ising fixed point at small pp, and determine critical exponents at the multicritical point.Comment: 20 pages, 25 figures, figures correcte

    Single-photon tunneling

    Full text link
    Strong evidence of a single-photon tunneling effect, a direct analog of single-electron tunneling, has been obtained in the measurements of light tunneling through individual subwavelength pinholes in a thick gold film covered with a layer of polydiacetylene. The transmission of some pinholes reached saturation because of the optical nonlinearity of polydiacetylene at a very low light intensity of a few thousands photons per second. This result is explained theoretically in terms of "photon blockade", similar to the Coulomb blockade phenomenon observed in single-electron tunneling experiments. The single-photon tunneling effect may find many applications in the emerging fields of quantum communication and information processing.Comment: 4 pages, 4figure

    Strong disorder fixed points in the two-dimensional random-bond Ising model

    Get PDF
    The random-bond Ising model on the square lattice has several disordered critical points, depending on the probability distribution of the bonds. There are a finite-temperature multicritical point, called Nishimori point, and a zero-temperature fixed point, for both a binary distribution where the coupling constants take the values +/- J and a Gaussian disorder distribution. Inclusion of dilution in the +/- J distribution (J=0 for some bonds) gives rise to another zero-temperature fixed point which can be identified with percolation in the non-frustrated case (J >= 0). We study these fixed points using numerical (transfer matrix) methods. We determine the location, critical exponents, and central charge of the different fixed points and study the spin-spin correlation functions. Our main findings are the following: (1) We confirm that the Nishimori point is universal with respect to the type of disorder, i.e. we obtain the same central charge and critical exponents for the +/- J and Gaussian distributions of disorder. (2) The Nishimori point, the zero-temperature fixed point for the +/- J and Gaussian distributions of disorder, and the percolation point in the diluted case all belong to mutually distinct universality classes. (3) The paramagnetic phase is re-entrant below the Nishimori point, i.e. the zero-temperature fixed points are not located exactly below the Nishimori point, neither for the +/- J distribution, nor for the Gaussian distribution.Comment: final version to appear in JSTAT; minor change

    Enhanced He-alpha emission from "smoked" Ti targets irradiated with 400nm, 45 fs laser pulses

    Get PDF
    We present a study of He-like 1s(2)-1s2p line emission from solid and low-density Ti targets under similar or equal to 45 fs laser pulse irradiation with a frequency doubled Ti: Sapphire laser. By varying the beam spot, the intensity on target was varied from 10(15) W/cm(2) to 10(19) W/cm(2). At best focus, low density "smoked" Ti targets yield similar to 20 times more He-alpha than the foil targets when irradiated at an angle of 45 degrees with s-polarized pulses. The duration of He-alpha emission from smoked targets, measured with a fast streak camera, was similar to that from Ti foils

    Local anisotropy and giant enhancement of local electromagnetic fields in fractal aggregates of metal nanoparticles

    Full text link
    We have shown within the quasistatic approximation that the giant fluctuations of local electromagnetic field in random fractal aggregates of silver nanospheres are strongly correlated with a local anisotropy factor S which is defined in this paper. The latter is a purely geometrical parameter which characterizes the deviation of local environment of a given nanosphere in an aggregate from spherical symmetry. Therefore, it is possible to predict the sites with anomalously large local fields in an aggregate without explicitly solving the electromagnetic problem. We have also demonstrated that the average (over nanospheres) value of S does not depend noticeably on the fractal dimension D, except when D approaches the trivial limit D=3. In this case, as one can expect, the average local environment becomes spherically symmetrical and S approaches zero. This corresponds to the well-known fact that in trivial aggregates fluctuations of local electromagnetic fields are much weaker than in fractal aggregates. Thus, we find that, within the quasistatics, the large-scale geometry does not have a significant impact on local electromagnetic responses in nanoaggregates in a wide range of fractal dimensions. However, this prediction is expected to be not correct in aggregates which are sufficiently large for the intermediate- and radiation-zone interaction of individual nanospheres to become important.Comment: 9 pages 9 figures. No revisions from previous version; only figure layout is change

    Weak quenched disorder and criticality: resummation of asymptotic(?) series

    Full text link
    In these lectures, we discuss the influence of weak quenched disorder on the critical behavior in condensed matter and give a brief review of available experimental and theoretical results as well as results of MC simulations of these phenomena. We concentrate on three cases: (i) uncorrelated random-site disorder, (ii) long-range-correlated random-site disorder, and (iii) random anisotropy. Today, the standard analytical description of critical behavior is given by renormalization group results refined by resummation of the perturbation theory series. The convergence properties of the series are unknown for most disordered models. The main object of these lectures is to discuss the peculiarities of the application of resummation techniques to perturbation theory series of disordered models.Comment: Lectures given at the Second International Pamporovo Workshop on Cooperative Phenomena in Condensed Matter (28th July - 7th August 2001, Pamporovo, Bulgaria). 51 pages, 12 figures, 1 style files include
    • 

    corecore