8 research outputs found

    HIF-1β Positively Regulates NF-κB Activity via Direct Control of TRAF6

    Get PDF
    NF-B signalling is crucial for cellular responses to inflammation but has also been associated with the hypoxia response. NF-B and HIF transcription factors possess an intense molecular crosstalk. Although it is known that HIF-1beta modulates NF-kappaB transcriptional response, very little is understood regarding how HIF-1beta contributes to NF-kappaB signalling. Here, we demonstrate that HIF-1beta is required for full NF-kappaB activation in cells following canonical and non-canonical stimuli. We found that HIF-1beta specifically controls TRAF6 expression in human cells but also in Drosophila melanogaster. HIF-1beta binds to the TRAF6 gene and controls its expression independently of HIF-1alpha. Furthermore, exogenous TRAF6 expression is able to rescue all of the cellular phenotypes observed in the absence of HIF-1beta. These results indicate that HIF-1beta is an important regulator of NF-kappaB with consequences for homeostasis and human disease.</jats:p

    Use of ChIP-qPCR to Study the Crosstalk Between HIF and NF-kappa B Signaling in Hypoxia and Normoxia

    Get PDF
    Hypoxia and inflammation are intensely connected in a functional crosstalk. Within this crosstalk, two major transcription factors take center stage: HIF and NF-κB. To investigate transcription factor function, an important aspect is its ability to bind DNA. The most appropriate method to study this property in cells is the use of chromatin immunoprecipitation followed by qPCR and/or next generation sequencing. This allows identification of potentially directly regulated genes as well as enhancer regions. Here we describe the ChIP-qPCR method in detail, including key aspects important for the success of the technique

    Fixed Cell Immunofluorescence for Quantification of Hypoxia-Induced Changes in Histone Methylation.

    Get PDF
    Hypoxia and its signalling pathway play a key role in human physiology and a variety of diseases. Alterations in histone methylation coordinate transcriptional responses to hypoxia. Here, we detail a fixed cell immunofluorescence method for quantifying hypoxia-induced changes in histone methylation, exemplified by the measurement of H3K27me3

    Role of hypoxia in the control of the cell cycle

    Get PDF
    The cell cycle is an important cellular process whereby the cell attempts to replicate its genome in an error-free manner. As such, mechanisms must exist for the cell cycle to respond to stress signals such as those elicited by hypoxia or reduced oxygen availability. This review focuses on the role of transcriptional and post-transcriptional mechanisms initiated in hypoxia that interface with cell cycle control. In addition, we discuss how the cell cycle can alter the hypoxia response. Overall, the cellular response to hypoxia and the cell cycle are linked through a variety of mechanisms, allowing cells to respond to hypoxia in a manner that ensures survival and minimal errors throughout cell division

    Regulation of chromatin accessibility by hypoxia and HIF.

    No full text
    Reduced oxygen availability (hypoxia) can act as a signalling cue in physiological processes such as development, but also in pathological conditions such as cancer or ischaemic disease. As such, understanding how cells and organisms respond to hypoxia is of great importance. The family of transcription factors called Hypoxia Inducible Factors (HIFs) co-ordinate a transcriptional programme required for survival and adaptation to hypoxia. However, the effects of HIF on chromatin accessibility are currently unclear. Here, using genome wide mapping of chromatin accessibility via ATAC-seq, we find hypoxia induces loci specific changes in chromatin accessibility are enriched at a subset hypoxia transcriptionally responsive genes, agreeing with previous data using other models. We show for the first time that hypoxia inducible changes in chromatin accessibility across the genome are predominantly HIF dependent, rapidly reversible upon reoxygenation and partially mimicked by HIF-α stabilisation independent of molecular dioxygenase inhibition. This work demonstrates that HIF is central to chromatin accessibility alterations in hypoxia, and has implications for our understanding of gene expression regulation by hypoxia and HIF
    corecore