139 research outputs found

    Evolutionary diversification of the BetaM interactome acquired through co-option of the ATP1B4 gene in placental mammals

    Get PDF
    ATP1B4 genes represent a rare instance of orthologous vertebrate gene co-option that radically changed properties of the encoded BetaM proteins, which function as Na, K-ATPase subunits in lower vertebrates and birds. Eutherian BetaM has lost its ancestral function and became a muscle-specific resident of the inner nuclear membrane. Our earlier work implicated BetaM in regulation of gene expression through direct interaction with the transcriptional co-regulator SKIP. To gain insight into evolution of BetaM interactome we performed expanded screening of eutherian and avian cDNA libraries using yeast-two-hybrid and split-ubiquitin systems. The inventory of identified BetaM interactors includes lamina-associated protein LAP-1, myocyte nuclear envelope protein Syne1, BetaM itself, heme oxidases HMOX1 and HMOX2; transcription factor LZIP/CREB3, ERGIC3, PHF3, reticulocalbin-3, and beta-sarcoglycan. No new interactions were found for chicken BetaM and human Na, K-ATPase beta 1, beta 2 and beta 3 isoforms, indicating the uniqueness of eutherian BetaM interactome. Analysis of truncated forms of BetaM indicates that residues 72-98 adjacent to the membrane in nucleoplasmic domain are important for the interaction with SKIP. These findings demonstrate that evolutionary alterations in structural and functional properties of eutherian BetaM proteins are associated with the increase in its interactome complexity

    ΠŸΠ°Ρ€Π°ΠΎΠΊΡΠΎΠ½Π°Π·Π°: ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Ρ‹ΠΉ Ρ„Π°ΠΊΡ‚ΠΎΡ€ антиоксидантной Π·Π°Ρ‰ΠΈΡ‚Ρ‹ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°

    Get PDF
    The paraoxonase (PON) gene family includes three members: PON1, PON2, and PON3 aligned in tandem on chromosome 7 in humans. All PON proteins share considerable structural homology and have the capacity to protect cells from oxidative stress; therefore, they have been implicated in the pathogenesis of several inflammatory diseases, particularly atherosclerosis. Increased production of reactive oxygen species as a result of decreased activities of mitochondrial electron transport chain complexes plays a role in the development of many inflammatory diseases, including atherosclerosis. PON1 and PON3 proteins can be detected in plasma and reside in the high-density lipoprotein fraction and protect against oxidative stress by hydrolyzing certain oxidized lipids in lipoproteins, macrophages, and atherosclerotic lesions. Paraoxonase 2 (PON2) possesses antiatherogenic properties and is associated with lower ROS levels. PON2 is involved in the antioxidative and anti-inflammatory response in intestinal epithelial cells. In contrast to PON1 and PON3, PON2 is cell-associated and is not found in plasma. It is widely expressed in a variety of tissues, including the kidney, and protects against cellular oxidative stress. Overexpression of PON2 reduces oxidative status, prevents apoptosis in vascular endothelial cells, and inhibits cell-mediated low density lipoprotein oxidation. PON2 also inhibits the development of atherosclerosis, via mechanisms involving the reduction of oxidative stress. In this review we explore the physiological roles of PON in disease development and modulation of PONs by infective (bacterial, viral) agents.ΠŸΠ°Ρ€Π°ΠΎΠΊΡΠΎΠ½Π°Π·Ρ‹ – это сСмСйство Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ², прСдставлСнноС PON1, PON2 ΠΈ PON3, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ ΡˆΠΈΡ€ΠΎΠΊΠΎΠΉ ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ каталитичСской ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ. PON1 ΠΈ PON3 Ρ†ΠΈΡ€ΠΊΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‚ Π² ΠΏΠ»Π°Π·ΠΌΠ΅ Π² состоянии, связанном с Π»ΠΈΠΏΠΎΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π°ΠΌΠΈ высокой плотности, ΠΏΡ€Π΅Π΄ΠΎΡ‚Π²Ρ€Π°Ρ‰Π°ΡŽΡ‚ окислСниС Π»ΠΈΠΏΡ€ΠΎΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΎΠ², ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°ΡŽΡ‚ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π»ΠΈΠΏΠΈΠ΄Π½Ρ‹Ρ… пСроксидов ΠΈ ΡΠ½ΠΈΠΆΠ°ΡŽΡ‚ риск развития атСросклСроза. PON2 являСтся Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΌ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠΌ ΠΈ Π½Π΅ обнаруТиваСтся Π² ΠΏΠ»Π°Π·ΠΌΠ΅. Β PON2 ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π° Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… тканях ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ ΠΏΠ΅Ρ‡Π΅Π½ΡŒ, Π»Π΅Π³ΠΊΠΈΠ΅, Ρ‚Ρ€Π°Ρ…Π΅ΡŽ, ΠΏΠΎΡ‡ΠΊΠΈ, сСрдцС, ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΡƒΡŽ ΠΆΠ΅Π»Π΅Π·Ρƒ, Ρ‚ΠΎΠ½ΠΊΠΈΠΉ ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊ, ΠΌΡ‹ΡˆΡ†Ρ‹, сСмСнники ΠΈ ΡΠ½Π΄ΠΎΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ. PON2 Ρ‚Π°ΠΊΠΆΠ΅ присутствуСт Π² дофаминСргичСских областях Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° ΠΈ Π² астроцитах. На субклСточном ΡƒΡ€ΠΎΠ²Π½Π΅, PON2 локализуСтся Π² митохондриях, Π³Π΄Π΅ ΠΏΡ€Π΅Π΄ΠΎΡ‚Π²Ρ€Π°Ρ‰Π°Π΅Ρ‚ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ Ρ‚Ρ€ΠΈΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄ΠΎΠ² ΠΈ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ стрСсса. PON3 - послСдняя ΠΈΠ· ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹Ρ… параоксоназ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ Π±ΠΎΠ»Π΅Π΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠΉ антиксидантной Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ. PON3 ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π° Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΊΠΎΠΆΠΈ, ΡΠ»ΡŽΠ½Π½Ρ‹Ρ… ΠΆΠ΅Π»Π΅Π·Π°Ρ…, ТСлСзистом эпитСлии ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ°, ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ°, эндомСтрии, Π³Π΅ΠΏΠ°Ρ‚ΠΎΡ†ΠΈΡ‚Π°Ρ…,Β  ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹, сСрдцС, ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ ΠΈ Π² Π»Π΅Π³ΠΎΡ‡Π½ΠΎΠΌ эпитСлии. PON3 нСдостаточно ΠΈΠ·ΡƒΡ‡Π΅Π½Π°, Π½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ Π΅Π΅ антиоксидантноС, ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠ΅ дСйствиС  Π·Π° счСт блокирования ΠΊΠ²ΠΎΡ€ΡƒΠΌ-зависимых систСм Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ. Π˜Π·Π±Ρ‹Ρ‚ΠΎΡ‡Π½Π°Ρ экспрСссия PON3 ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ атСросклСротичСских бляшСк ΠΈ прСпятствуСт Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΡŽ оТирСния, количСство PON3 увСличиваСтся ΠΏΡ€ΠΈ онкологичСских заболСваниях, ΠΏΠΎΠ²Ρ‹ΡˆΠ°Ρ сопротивлСниС ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΊ оксидативному стрСссу ΠΈ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Ρƒ. Π’ ΠΎΠ±Π·ΠΎΡ€Π΅ прСдставлСна информация ΠΎ физиологичСской Ρ€ΠΎΠ΄ΠΈ параоксоназ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΡ… участии Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, ассоциированных с ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ стрСссом (атСросклСроз, эндомСтриоз, болСзнь ΠŸΠ°Ρ€ΠΊΠΈΠ½ΡΠΎΠ½Π°, Ρ†ΠΈΡ€Ρ€ΠΎΠ· ΠΏΠ΅Ρ‡Π΅Π½ΠΈ, Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΈ вирусныС ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ ΠΈ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Π΅ процСссы)

    Proteome-metabolome profiling of ovarian cancer ascites reveals novel components involved in intercellular communication

    Get PDF
    Β© 2014 by The American Society for Biochemistry and Molecular Biology, Inc. Ovarian cancer ascites is a native medium for cancer cells that allows investigation of their secretome in a natural environment. This medium is of interest as a promising source of potential biomarkers, and also as a medium for cell-cell communication. The aim of this study was to elucidate specific features of the malignant ascites metabolome and proteome. In order to omit components of the systemic response to ascites formation, we compared malignant ascites with cirrhosis ascites. Metabolome analysis revealed 41 components that differed significantly between malignant and cirrhosis ascites. Most of the identified cancer-specific metabolites are known to be important signaling molecules. Proteomic analysis identified 2096 and 1855 proteins in the ovarian cancer and cirrhosis ascites, respectively; 424 proteins were specific for the malignant ascites. Functional analysis of the proteome demonstrated that the major differences between cirrhosis and malignant ascites were observed for the cluster of spliceosomal proteins. Additionally, we demonstrate that several splicing RNAs were exclusively detected in malignant ascites, where they probably existed within protein complexes. This result was confirmed in vitro using an ovarian cancer cell line. Identification of spliceosomal proteins and RNAs in an extracellular medium is of particular interest; the finding suggests that they might play a role in the communication between cancer cells. In addition, malignant ascites contains a high number of exosomes that are known to play an important role in signal transduction. Thus our study reveals the specific features of malignant ascites that are associated with its function as a medium of intercellular communication

    Influence Of Fluorination On The Physical Properties Of Normal Aliphatic Alcohols

    No full text
    • …
    corecore