497 research outputs found

    An Analytical Approach to the Protein Designability Problem

    Full text link
    We present an analytical method for determining the designability of protein structures. We apply our method to the case of two-dimensional lattice structures, and give a systematic solution for the spectrum of any structure. Using this spectrum, the designability of a structure can be estimated. We outline a heirarchy of structures, from most to least designable, and show that this heirarchy depends on the potential that is used.Comment: 16 pages 4 figure

    A New Algorithm for Protein Design

    Full text link
    We apply a new approach to the reverse protein folding problem. Our method uses a minimization function in the design process which is different from the energy function used for folding. For a lattice model, we show that this new approach produces sequences that are likely to fold into desired structures. Our method is a significant improvement over previous attempts which used the energy function for designing sequences.Comment: 10 pages latex 2.09 no figures. Use uufiles to decod

    Hiking in the energy landscape in sequence space: a bumpy road to good folders

    Full text link
    With the help of a simple 20 letters, lattice model of heteropolymers, we investigate the energy landscape in the space of designed good-folder sequences. Low-energy sequences form clusters, interconnected via neutral networks, in the space of sequences. Residues which play a key role in the foldability of the chain and in the stability of the native state are highly conserved, even among the chains belonging to different clusters. If, according to the interaction matrix, some strong attractive interactions are almost degenerate (i.e. they can be realized by more than one type of aminoacid contacts) sequence clusters group into a few super-clusters. Sequences belonging to different super-clusters are dissimilar, displaying very small (10\approx 10%) similarity, and residues in key-sites are, as a rule, not conserved. Similar behavior is observed in the analysis of real protein sequences.Comment: 17 pages 5 figures Corrected typos added auxiliary informatio

    Energetics of Protein-DNA Interactions

    Get PDF
    Protein-DNA interactions are vital for many processes in living cells, especially transcriptional regulation and DNA modification. To further our understanding of these important processes on the microscopic level, it is necessary that theoretical models describe the macromolecular interaction energetics accurately. While several methods have been proposed, there has not been a careful comparison of how well the different methods are able to predict biologically important quantities such as the correct DNA binding sequence, total binding free energy, and free energy changes caused by DNA mutation. In addition to carrying out the comparison, we present two important theoretical models developed initially in protein folding that have not yet been tried on protein-DNA interactions. In the process, we find that the results of these knowledge-based potentials show a strong dependence on the interaction distance and the derivation method. Finally, we present a knowledge-based potential that gives comparable or superior results to the best of the other methods, including the molecular mechanics force field AMBER99
    corecore