12 research outputs found

    Enrichment of Targetable Mutations in the Relapsed Neuroblastoma Genome - Fig 1

    No full text
    <p><b>Study cohort overview</b> A) Tabulation of Children’s Oncology Group (COG) risk classification and treatment time points of biopsy for 151 samples. (Intermed. = intermediate risk group) B) Number of samples taken at each treatment time point for nine patients with serial biopsies. (HR = high risk, IR = intermediate risk, LR = low risk at time of biopsy; further information in <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1006501#pgen.1006501.s003" target="_blank">S2 Table</a>) C) Tabulation of all variants identified (VUS: variants of unknown significance) D) Total number of variants identified per sample, stratified by COG risk group. Inset shows a similar calculation for suspected driver variants only. Heavy line represents the median of the data. “n” indicates the number of patients in each risk group. E) Total number of variants in each sample. Each bar represents an individual sample; color corresponds to risk group (red = high, blue = intermediate, green = low).</p

    Genetic variants from a single patient at different treatment time points.

    No full text
    <p>Each biopsy was at a different anatomic site. Red denotes suspected driver variants; gray denotes variants of unknown significance. Letter preceding tumor location indicates primary (P) or metastatic (M) site. Number in parentheses indicates inferred allelic fraction for mutation calls, or inferred copy number for amplification or deletion calls. See <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1006501#pgen.1006501.s003" target="_blank">S2 Table</a> for additional details. Note that this patient was treated with crizotinib following the 5<sup>th</sup> relapse.</p

    A phase I study of single-agent perifosine for recurrent or refractory pediatric CNS and solid tumors

    No full text
    <div><p>The PI3K/Akt/mTOR signaling pathway is aberrantly activated in various pediatric tumors. We conducted a phase I study of the Akt inhibitor perifosine in patients with recurrent/refractory pediatric CNS and solid tumors. This was a standard 3+3 open-label dose-escalation study to assess pharmacokinetics, describe toxicities, and identify the MTD for single-agent perifosine. Five dose levels were investigated, ranging from 25 to 125 mg/m2/day for 28 days per cycle. Twenty-three patients (median age 10 years, range 4–18 years) with CNS tumors (DIPG [n = 3], high-grade glioma [n = 5], medulloblastoma [n = 2], ependymoma [n = 3]), neuroblastoma (n = 8), Wilms tumor (n = 1), and Ewing sarcoma (n = 1) were treated. Only one DLT occurred (grade 4 hyperuricemia at dose level 4). The most common grade 3 or 4 toxicity at least possibly related to perifosine was neutropenia (8.7%), with the remaining grade 3 or 4 toxicities (fatigue, hyperglycemia, fever, hyperuricemia, and catheter-related infection) occurring in one patient each. Pharmacokinetics was dose-saturable at doses above 50 mg/m<sup>2</sup>/day with significant inter-patient variability, consistent with findings reported in adult studies. One patient with DIPG (dose level 5) and 4 of 5 patients with high-grade glioma (dose levels 2 and 3) experienced stable disease for two months. Five subjects with neuroblastoma (dose levels 1 through 4) achieved stable disease which was prolonged (≥11 months) in three. No objective responses were noted. In conclusion, the use of perifosine was safe and feasible in patients with recurrent/refractory pediatric CNS and solid tumors. An MTD was not defined by the 5 dose levels investigated. Our RP2D is 50 mg/m2/day.</p></div
    corecore