9 research outputs found

    Left ventricular non-compaction: clinical features and cardiovascular magnetic resonance imaging

    Get PDF
    Background: It is apparent that despite lack of family history, patients with the morphological characteristics of left ventricular non-compaction develop arrhythmias, thrombo-embolism and left ventricular dysfunction. METHODS: Forty two patients, aged 48.7 +/- 2.3 yrs (mean +/- SEM) underwent cardiovascular magnetic resonance (CMR) for the quantification of left ventricular volumes and extent of non-compacted (NC) myocardium. The latter was quantified using planimetry on the two-chamber long axis LV view (NC area). The patients included those referred specifically for CMR to investigate suspected cardiomyopathy, and as such is represents a selected group of patients. RESULTS: At presentation, 50% had dyspnoea, 19% chest pain, 14% palpitations and 5% stroke. Pulmonary embolism had occurred in 7% and brachial artery embolism in 2%. The ECG was abnormal in 81% and atrial fibrillation occurred in 29%. Transthoracic echocardiograms showed features of NC in only 10%. On CMR, patients who presented with dyspnoea had greater left ventricular volumes (both p < 0.0001) and a lower left ventricular ejection fraction (LVEF) (p < 0.0001) than age-matched, healthy controls. In patients without dyspnoea (n = 21), NC area correlated positively with end-diastolic volume (r = 0.52, p = 0.0184) and end-systolic volume (r = 0.56, p = 0.0095), and negatively with EF (r = -0.72, p = 0.0001). CONCLUSION: Left ventricular non-compaction is associated with dysrrhythmias, thromboembolic events, chest pain and LV dysfunction. The inverse correlation between NC area and EF suggests that NC contributes to left ventricular dysfunction

    Vitiligo: Pathomechanisms and genetic polymorphism of susceptible genes

    No full text
    526-539Vitiligo is a depigmenting disorder resulting from the loss of melanocytes in the skin and affects 1-4% of the world population. Incidence of vitiligo is found to be 0.5-2.5% in India with a high prevalence of 8.8% in Gujarat and Rajasthan states. The cellular and molecular mechanisms that lead to melanocyte destruction in this disorder are not yet been fully elucidated. Genetic factors, neural factors, toxic ROS metabolites, autoantibodies and autoreactive T lymphocytes may be the causative agents for the selective destruction of melanocytes. Three major hypotheses of pathogenesis of vitiligo are neural, autoimmune and oxidative stress hypotheses, however none of them explains the pathogenesis of vitiligo in toto. Genetics of vitiligo is characterized by incomplete penetrance, multiple susceptibility loci and genetic heterogeneity. Recent advances in this field are linkage and association of candidate gene studies. The linkage and association studies provide a strong evidence for the presence of multiple vitiligo susceptibility genes on different chromosomes. Several candidate genes for vitiligo are identified from different populations. In this review, we have provide an overview of different hypotheses of vitiligo pathogenesis, and discuss the recent advances in this field with special reference to linkage, association and candidate gene approach

    Study of Oxidative Stress in Vitiligo

    No full text
    Vitiligo is an idiopathic, acquired, circumscribed, hypomelanotic skin disorder, characterized by milky white patches of different sizes and shapes. It is due to the destruction of melanocytes resulting in the absence of pigment production of the skin and mucosal surfaces. Oxidative stress has been implicated in pathophysiology of vitiligo. To study the activity of blood Superoxide dismutase (SOD) and Glutathione peroxidase (GPx) in vitiligo patients. A case–control study was conducted in which 100 patients were enrolled after written consent. 50 cases were of active vitiligo and 50 served as control (25 healthy control and 25 with stable vitiligo). SOD—In our study, among the active vitiligo cases 90% had high level of SOD and 10% had normal level of SOD. Among the stable vitiligo controls, 92% had normal level of SOD and 8% had low levels of SOD.The difference between active vitiligo cases and stable vitiligo control as well as with healthy control was statistically significant (P value < 0.05). GPx—Among the active vitiligo cases 74% had normal GPx levels, 22% had low and only 4% had high levels of GPx. Among the stable vitiligo controls, 64% had normal GPx levels, 16% had low, and 20% had high levels of GPx. The difference between active vitiligo cases and stable vitiligo control as well as with healthy control was statistically not significant (P value > 0.05). Our study shows that oxidative stress is involved in the pathophysiology of vitiligo, as indicated by the high levels of serum superoxide dismutase activity
    corecore