38 research outputs found

    Development and validation of a RP-HPLC method for determination of citicoline monosodium in human plasma

    Get PDF
    A sensitive and specific high performance reversed phase liquid chromatographic method was developed for quantification of citicoline monosodium (CTM) in human plasma. The active drug was isocratically eluted at a flow rate of 1 ml/min at ambient temperature in a nucleosil C18 analytical column with a mobile phase composed of tetrabutyl ammonium hydro gen sulfate buffer (0.005 M, pH5.0): methanol (95:05, v/v). Photodiode array (PDA) was performed at 270 nm and the retention time of the drug was found to be 6.64 min. The lowest limit of quantification (LLOQ) and of detection (LOD) were found to be 30 and 10 ng/ml, respectively. The method was validated and the response was found to be linear in the drug (CTM in spiked plasma) concentration range 150-900 ng/ml. The method was found to be accurate, with ranging from 96.38 to 98.65 % and precise, with intra-day, inter-day as well as analyst-toanalyst precision. The total recoveries of the method ranged between 95.69 and 97.89 %. Stability data revealed that the drug is stable in human plasma under various test conditions and the method can be successfully used for analysis of CTM in human plasma and in pharmacokinetic studies.Colegio de Farmacéuticos de la Provincia de Buenos Aire

    Denture Stomatitis: A Literature Review

    No full text
    Denture stomatitis is a prevalent and longstanding problem in complete denture wearers. Post denture placement produces significant changes in the oral environment that may have an adverse effect on the integrity of the oral tissues. Mucosal changes could result from a mechanical irritation by the dentures, traumatic occlusion an accumulation of microbial plaque, fungal infection or, a toxic or allergic reaction to components of the denture material. In the present article, various etiological factors contributing to the denture stomatitis and its treatment are reviewed

    Seed Biopriming with Microbial Inoculant Triggers Local and Systemic Defense Responses against Rhizoctonia solani Causing Banded Leaf and Sheath Blight in Maize (Zea mays L.)

    No full text
    Plant growth promoting rhizobacteria Pseudomonas aeruginosa strain MF-30 isolated from maize rhizosphere was characterized for several plant growth stimulating attributes. The strain MF-30 was also evaluated for antifungal properties against Rhizoctonia solani causing banded leaf and sheath blight in maize (Zea mays L.) under in vitro conditions and was found to have higher mycelial growth suppression in the culture suspension (67.41%) followed by volatile organic compounds (62.66%) and crude extract (51.20%) in a dual plate assay. The endophytic and epiphytic colonization ability was tested using Green Fluorescent Protein (GFP)-tagging. Visualization through confocal scanning laser microscope clearly indicated that strain MF-30 colonizes the root and foliar parts of the plants. Further, the effects of seed bio-priming with P. aeruginosa MF-30 was evaluated in the induction and bioaccumulation of defense-related biomolecules, enzymes, natural antioxidants, and other changes in maize under pot trial. This not only provided protection from R. solani but also ensured growth promotion under pathogenic stress conditions in maize. The maximum concentration of hydrogen peroxide (H2O2) was reported in the root and shoot of the plants treated with R. solani alone (8.47 and 17.50 mmol mg−1 protein, respectively) compared to bioagent, P. aeruginosa MF-30 bio-primed plants (3.49 and 7.50 mmol mg−1 protein, respectively). Effects on total soluble sugar content, total protein, and total proline were also found to enhanced significantly due to inoculation of P. aeruginosa MF-30. The activities of anti-oxidative defense enzymes phenylalanine ammonia lyase (PAL), ascorbate peroxidase, peroxidase, superoxide dismutase, and catalase increased significantly in the plants bio-primed with P. aeruginosa MF-30 and subsequent foliar spray of culture suspension of MF-30 compared to pathogen alone inoculated plants. qRT-PCR analysis revealed that seed bio-priming and foliar application of P. aeruginosa MF-30 significantly increased the expression of PR-1 and PR-10 genes with the simultaneous decrease in the disease severity and lesion length in the maize plants under pathogenic stress conditions. A significant enhancement of shoot and root biomass was recorded in MF-30 bio-primed plants as compared to untreated control (p < 0.05). Significant increase in plant growth and antioxidant content, as well as decreased disease severity in the P. aeruginosa MF-30 bio-primed plants, suggested the possibility of an eco-friendly and economical means of achieving antioxidants-rich, healthier maize plants

    Not Available

    No full text
    Not AvailableUnder changing climate, soil salinity and sodicity is a limiting factor to crop production and are considered a threat to sustainability in agriculture. A number of attempts are being made to develop microbe-based technologies for alleviation of toxic effects of salts. However, the mechanisms of salt tolerance in agriculturally important crops are not fully understood and still require in-depth study in the backdrop of emerging concepts in biological systems. The present investigation was aimed to decipher the microbe-mediated mechanisms of salt tolerance in maize. Endophytic Pseudomonas geniculate MF-84 was isolated from maize rhizosphere and tagged with green fluorescent protein for localization in the plant system. Confocal microphotographs clearly indicate that MF-84 was localized in the epidermal cells, cortical tissues, endodermis and vascular bundles including proto-xylem, meta-xylem, phloem and bundle sheath. The role of P. geniculate MF-84 in induction and bioaccumulation of soluble sugar, proline and natural antioxidants enzymes in maize plant was investigated which lead not only to growth promotion but also provide protection from salt stress in maize. Results suggested that application of P. geniculate MF-84 reduces the uptake of Na+ and increases uptake of K+ and Ca2+ in maize roots indicative of the role of MF-84 in maintaining ionic balance/homeostasis in the plant roots under higher salt conditions. It not only helps in alleviation of toxic effects of salt but also increases plant growth along with reduction in crop losses due to salinity and sodicityNot Availabl
    corecore