11 research outputs found

    Light generation via quantum interaction of electrons with periodic nanostructures

    Get PDF
    The Smith-Purcell effect is a hallmark of light-matter interactions in periodic structures, resulting in light emission with distinct spectral and angular distribution. We find yet undiscovered effects in Smith-Purcell radiation that arise due to the quantum nature of light and matter, through an approach based on exact energy and momentum conservation. The effects include emission cutoff, convergence of emission orders, and a possible second photoemission process, appearing predominantly in structures with nanoscale periodicities (a few tens of nanometers or less), accessible by recent nanofabrication advances. We further present ways to manipulate the effects by varying the geometry or by accounting for a refractive index. Our derivation emphasizes the fundamental relation between Smith-Purcell radiation and Čerenkov radiation, and paves the way to alternative kinds of light sources wherein nonrelativistic electrons create Smith-Purcell radiation in nanoscale, on-chip devices. Finally, the path towards experimental realizations of these effects is discussed

    Inverse design of broadband, strongly-coupled plexcitonic nonlinear metasurfaces

    Full text link
    Hybrid photonic structures of plasmonic metasurfaces coupled to atomically thin semiconductors have emerged as a versatile platform for strong light-matter interaction, supporting both strong coupling and parametric nonlinearities. However, designing optimized nonlinear hybrid metasurfaces is a complex task, as the multiple parameters' contribution to the nonlinear response is elusive. Here we present a simple yet powerful strategy for maximizing the nonlinear response of the hybrid structures based on evolutionary inverse design of the metasurface's near-field enhancement around the excitonic frequency. We show that the strong coupling greatly enhances the nonlinear signal, and that its magnitude is mainly determined by the Rabi splitting, making it robust to geometrical variations of the metasurface. Furthermore, the large Rabi splitting attained by these hybrid structures enables broadband operation over the frequencies of the hybridized modes. Our results constitute a significant step towards achieving flexible nonlinear control, which can benefit applications in nonlinear frequency conversion, all-optical switching, and phase-controlled nonlinear metasurfaces

    Observation of 2D Cherenkov Radiation

    No full text
    For over 80 years of research, the conventional description of free-electron radiation phenomena, such as Cherenkov radiation, has remained unchanged: classical three-dimensional electromagnetic waves. Interestingly, in reduced dimensionality, the properties of free-electron radiation are predicted to fundamentally change. Here, we present the first observation of Cherenkov surface waves, wherein free electrons emit narrow-bandwidth photonic quasiparticles propagating in two dimensions. The low dimensionality and narrow bandwidth of the effect enable us to identify quantized emission events through electron energy loss spectroscopy. Our results support the recent theoretical prediction that free electrons do not always emit classical light and can instead become entangled with the photons they emit. The two-dimensional Cherenkov interaction achieves quantum coupling strengths over 2 orders of magnitude larger than ever reported, reaching the single-electron–single-photon interaction regime for the first time with free electrons. Our findings pave the way to previously unexplored phenomena in free-electron quantum optics, facilitating bright, free-electron-based quantum emitters of heralded Fock states
    corecore