20 research outputs found

    Two qubits in one transmon -- QEC without ancilla hardware

    Full text link
    We show that it is theoretically possible to use higher energy levels for storing and controlling two qubits within a superconducting transmon. This is done by identifying energy levels as product states between multiple effecitve qubits. As a proof of concept we realise a complete set of gates necessary for universal computing by numerically optimising control pulses for single qubit gates on each of the qubits, entangling gates between the two qubits in one transmon, and an entangling gate between two qubits from two coupled transmons. The optimisation considers parameters which could make it possible to validate this experimentally. With these control pulses it is in principle possible to double the number of available qubits without any overhead in hardware. The additional qubits could be used in algorithms which need many short-living qubits such as syndrom qubits in error correction or by embedding effecitve higher connectivity in qubit networks.Comment: 14 pages, 12 figure

    Pulsed Laser Cooling for Cavity-Optomechanical Resonators

    Get PDF
    A pulsed cooling scheme for optomechanical systems is presented that is capable of cooling at much faster rates, shorter overall cooling times, and for a wider set of experimental scenarios than is possible by conventional methods. The proposed scheme can be implemented for both strongly and weakly coupled optomechanical systems in both weakly and highly dissipative cavities. We study analytically its underlying working mechanism, which is based on interferometric control of optomechanical interactions, and we demonstrate its efficiency with pulse sequences that are obtained by using methods from optimal control. The short time in which our scheme approaches the optomechanical ground state allows for a significant relaxation of current experimental constraints. Finally, the framework presented here can be used to create a rich variety of optomechanical interactions and hence offers a novel, readily available toolbox for fast optomechanical quantum control.Comment: 6 pages, 4 figure

    An introduction into optimal control for quantum technologies

    Full text link
    In this series of lectures, we would like to introduce the audience to quantum optimal control. The first lecture will cover basic ideas and principles of optimal control with the goal of demystifying its jargon. The second lecture will describe computational tools (for computations both on paper and in a computer) for its implementation as well as their conceptual background. The third chapter will go through a series of popular examples from different applications of quantum technology.Comment: Lecture notes for the 51st IFF Spring Schoo

    Continuous input nonlocal games

    Full text link
    We present a family of nonlocal games in which the inputs the players receive are continuous. We study three representative members of the family. For the first two a team sharing quantum correlations (entanglement) has an advantage over any team restricted to classical correlations. We conjecture that this is true for the third member of the family as well.Comment: Journal version, slight modification

    An integrated tool-set for Control, Calibration and Characterization of quantum devices applied to superconducting qubits

    Full text link
    Efforts to scale-up quantum computation have reached a point where the principal limiting factor is not the number of qubits, but the entangling gate infidelity. However, a highly detailed system characterization required to understand the underlying errors is an arduous process and impractical with increasing chip size. Open-loop optimal control techniques allow for the improvement of gates but are limited by the models they are based on. To rectify the situation, we provide a new integrated open-source tool-set for Control, Calibration and Characterization (C3C^3), capable of open-loop pulse optimization, model-free calibration, model fitting and refinement. We present a methodology to combine these tools to find a quantitatively accurate system model, high-fidelity gates and an approximate error budget, all based on a high-performance, feature-rich simulator. We illustrate our methods using fixed-frequency superconducting qubits for which we learn model parameters to an accuracy of <1%<1\% and derive a coherence limited cross-resonance (CR) gate that achieves 99.6%99.6\% fidelity without need for calibration.Comment: Source code available at http://q-optimize.org; added reference

    Software tool-set for automated quantum system identification and device bring up

    Full text link
    We present a software tool-set which combines the theoretical, optimal control view of quantum devices with the practical operation and characterization tasks required for quantum computing. In the same framework, we perform model-based simulations to create control schemes, calibrate these controls in a closed-loop with the device (or in this demo - by emulating the experimental process) and finally improve the system model through minimization of the mismatch between simulation and experiment, resulting in a digital twin of the device. The model based simulator is implemented using TensorFlow, for numeric efficiency, scalability and to make use of automatic differentiation, which enables gradient-based optimization for arbitrary models and control schemes. Optimizations are carried out with a collection of state-of-the-art algorithms originated in the field of machine learning. All of this comes with a user-friendly Qiskit interface, which allows end-users to easily simulate their quantum circuits on a high-fidelity differentiable physics simulator
    corecore