86 research outputs found

    Event-Triggered Decentralized Federated Learning over Resource-Constrained Edge Devices

    Full text link
    Federated learning (FL) is a technique for distributed machine learning (ML), in which edge devices carry out local model training on their individual datasets. In traditional FL algorithms, trained models at the edge are periodically sent to a central server for aggregation, utilizing a star topology as the underlying communication graph. However, assuming access to a central coordinator is not always practical, e.g., in ad hoc wireless network settings. In this paper, we develop a novel methodology for fully decentralized FL, where in addition to local training, devices conduct model aggregation via cooperative consensus formation with their one-hop neighbors over the decentralized underlying physical network. We further eliminate the need for a timing coordinator by introducing asynchronous, event-triggered communications among the devices. In doing so, to account for the inherent resource heterogeneity challenges in FL, we define personalized communication triggering conditions at each device that weigh the change in local model parameters against the available local resources. We theoretically demonstrate that our methodology converges to the globally optimal learning model at a O(lnkk)O{(\frac{\ln{k}}{\sqrt{k}})} rate under standard assumptions in distributed learning and consensus literature. Our subsequent numerical evaluations demonstrate that our methodology obtains substantial improvements in convergence speed and/or communication savings compared with existing decentralized FL baselines.Comment: 23 pages. arXiv admin note: text overlap with arXiv:2204.0372

    Separase: a universal trigger for sister chromatid disjunction but not chromosome cycle progression

    Get PDF
    Separase is a protease whose liberation from its inhibitory chaperone Securin triggers sister chromatid disjunction at anaphase onset in yeast by cleaving cohesin's kleisin subunit. We have created conditional knockout alleles of the mouse Separase and Securin genes. Deletion of both copies of Separase but not Securin causes embryonic lethality. Loss of Securin reduces Separase activity because deletion of just one copy of the Separase gene is lethal to embryos lacking Securin. In embryonic fibroblasts, Separase depletion blocks sister chromatid separation but does not prevent other aspects of mitosis, cytokinesis, or chromosome replication. Thus, fibroblasts lacking Separase become highly polyploid. Hepatocytes stimulated to proliferate in vivo by hepatectomy also become unusually large and polyploid in the absence of Separase but are able to regenerate functional livers. Separase depletion in bone marrow causes aplasia and the presumed death of hematopoietic cells other than erythrocytes. Destruction of sister chromatid cohesion by Separase may be a universal feature of mitosis in eukaryotic cells
    corecore