13 research outputs found

    Dynamic Analysis of UAV’s Motor Support Bar Length Control System

    Get PDF
    UAV (Unmanned Aerial Vehicle) can be described as aircraft that do not need any presence of pilots inside it. Basically, UAV is come out in a small aircraft sothat the aircraft can be easily controlled by the people from afar[1]. The UAV’s motor support bar length control systems are the UAV’s control systems that move according to the variable arm length movement and also a constant revolution of the propeller speeds. The purpose of the study is to run the dynamic analysis at the UAV’s motor support bar length control systems and also to enhance the UAV’s mathematical modellingby using the SOLIDWORKS®software which involved in using both CAD and CAE systems[2]. The detaileddesign is used SOLIDWORKS®software to conduct the static and dynamic analysis of UAV’s motor support bar length control systems. The design is restricted to the arm due to the critical part that has the highest vibration at the UAV’s motor support bar length control systems. The results that obtain from the study from the static and dynamic analysis are the displacement of the motor, Von Misses stress of the arm, and also the resonance frequency that will give the modes shape to the systems

    Analysis of EMG based Arm Movement Sequence using Mean and Median Frequency

    Get PDF
    This paper present the studies of analysis arm movement sequence which dedicated for upper limb rehabilitation after stroke. The recovery of the arm could be optimized if the rehabilitation therapy is in a right manner. Upper limb weakness after stroke is prevalent in post-stroke rehabilitation, many factors that can deficit muscle strength there are neural, muscle structure and function change after stroke. Rehabilitation process needs to start as soon as after a stroke attack, repetitive and conceptualized. On the other hand monitoring of muscle activity also need in the rehabilitation process to evaluate muscle strength, motor function and progress in the rehabilitation process. The objective of this research is to analysis arm movement sequence using the feature frequency domain. In this study deltoid, biceps and flexor carpum ulnaris (FCU) muscles will be monitored by surface electromyography (sEMG). Five healthy subjects male and female become participants in data recording. Mean frequency (MNF) and median frequency (MDF) domain are two signals processing technique used for arm movement sequence analyzing. The analysis result showed that MNF is better than MDF where MNF produced higher frequency than MDF from each segment. From the data analysis, this movement sequence design more focuses on deltoid and FCU muscles treatment. This movement sequence has five condition movements. First undemanding, second difficult, third moderate, fourth moderate and the last cool-down movements. The best movement sequence minimum has four condition movements warming up - moderate - difficult - cool-down

    Electromagnetic Interference (EMI) Analysis on Surface Roughness of 3C-Silicon Carbide (3C-SiC) Deposited on Silicon (Si) Substrate

    Get PDF
    Electronic devices may produce undesirable electromagnetic (EM) interference which can degrade the system performance and also affect human health. In this paper, the potential property of 3C-Silicon Carbide (3C-SiC) as the microwave absorbing material is investigated. The reflection coefficient, Г of 3C-SiC has been measured using an open-ended coaxial sensor. The substrates consisted of films of 3C-SiC of two different thicknesses (0.265µm and 0.285µm) with both polished and unpolished surfaces. The measurements were taken in the frequency range within 1.4 GHz to 18.8 GHz at room temperature. A continuous decrease in the reflection coefficient was measured in 3C-SiC as the frequency increased to 18.8GHz. The results have shown that the rougher surface of unpolished 3C-SiC of 0.285µm thickness could be applied as microwave absorbing material

    Microwave Dielectric and Reflection Characterization on Silver Grunter (Pomadasys hasta) and Tilapia (Oreochromisniloticus) Fish Scale for Potential Use as Scaffold

    Get PDF
    Hydroxyapatite from fish scale was studied and reported of its potential in bone scaffold or regenerative material. Fish scale as a source of collagen and valuable matrix proteins in the pharmaceutical and cosmetic industries is overwhelmingly studied among researchers. In this work, dielectric and reflection measurement was conducted on fish scale from Silver Grunter (Pomadasys hasta) and Tilapia (Oreochromisniloticus) fish ranging from 200 MHz to 20 GHz using Agilent E8362B PNA Network Analyzer in conjunction with an Agilent 85070E High Temperature Probe. The fish scale was prepared as sample under test prior to measurements. Dielectric constant, and loss factor increase with frequency. Meanwhile, the measured magnitude and phase of reflection coefficient that acquired through reflection measurement decrease when frequency increases. On the other hand, both fish scales were characterized as crystalline structure via X-ray diffraction analysis. It is important in analyzing dielectric mechanism occurs in fish scale

    Effects of Variable Arm Length on UAV Control Systems

    No full text
    Quadrotor is a type of unmanned aerial vehicle that has been widely used in many applications, such as, policing, surveillance, aerial photography and agriculture. Conventionally, the control of quadrotor flight direction is accomplished by varying speeds of motors or manipulating torques. In this paper, a novel mechanism is proposed. The mechanism uses stepper motors to control the arm length for changing flight directions, while maintaining motors' speed at constant. A mathematical model has been created. The analysis results have shown that varying arm length can effectively control the moment of bending of quadrotors. Increasing the length of arms can result in the increase of the moment of bending without changing speed of motors, thus saving energies. Experimental results have shown that the new mechanism is able to carry more payloads which the motor speed can be utilized fully at 100% while the flight direction is been controlled by changing of the arm length compared to conventional flight control mechanisms

    Microwave dielectric analysis on adhesive disbond in acrylic glass (poly (methyl methacrylate)) at Ku-band

    No full text
    A microwave dielectric spectroscopy for detecting adhesive disbonds between acrylic glass (aka Poly (methyl methacrylate)) was discussed. The adhesive bond was developed using epoxy resin and acrylate. The level of joint disbond can be quantified using Young Modulus. In this work, the strength of bond is affected by radius of air void within adhesive bond. A high-frequency electromagnetic wave propagated through two joint acrylic glass with acrylate and epoxy adhesive using waveguide adaptor WR90 in conjunction with professional network analyser. This electromagnetic wave is reflected and transmitted at the bond interface due to mismatch impedance at adhesive bond. The output is a dielectric properties that characterizes the bond interface. The increment of Young Modulus leads to increment of dielectric constant and loss factor for epoxy resin and acrylates, respectively
    corecore