4 research outputs found

    Quality assessment of conventional X-ray diagnostic equipment by measuring X-ray exposure and tube output parameters in Great Khorasan Province, Iran

    Get PDF
    Introduction: Regular implementation of quality control (QC) program in diagnostic X-ray facilities may affect both image quality and patient radiation dose due to the changes in exposure parameters. Therefore, this study aimed to investigate the status of randomly selected conventional radiographic X-ray devices installed in radiology centers of Great Khorasan Province, Iran, to produce the data needed to formulate QC policies, which are essential to ensure the accuracy of the diagnosis while minimizing the radiation dose. Material and Methods: This cross-sectional study was performed using a calibrated Piranha multi-purpose detector to measure QC parameters in order to unify X‐ray imaging practices using international guidelines. The QC parameters included voltage accuracy, voltage reproducibility, exposure time accuracy, exposure time reproducibility, tube output linearity with time andmilliampere (mA), and tube output reproducibility. Data analysis procedures were performed based on the type of an X-ray generator, which has not been reported in previous studies. Results: The results showed that the implementation of high-frequency X-ray generators were more advantageous compared to alternative current generators, due to their efficient, better accuracy, linearity, and reproducibility. Conclusion: The survey revealed that the QC program was not conducted at regular intervals in some of the investigated radiology centers, mostly because of inadequate enforcement by national regulatory authorities for implementation of QC program

    Assessment of Radiation Dose to the Lens of the Eye and Thyroid of Patients Undergoing Head and Neck Computed Tomography at Five Hospitals in Mashhad, Iran

    Get PDF
    Introduction: In recent years, the number of computed tomography (CT) scans, which is a high-dose technique, has increased significantly. Head and neck CT is performed frequently and thyroid, particularly in children, has always been considered a sensitive organ. In recent years, radiobiologists and health physicists have been more concerned about the safety of lenses of the eyes, as cataract is no longer considered a deterministic effect. Material and Methods: In the present study, incurred doses to the thyroid and lens of the eye of 140 patients who underwent common head and neck CT at five hospitals were measured by thermoluminescent dosimeters (TLD-100). The patients were divided into two age groups of pediatrics and adults. TLD chips were placed on the patient’s skin surface. For each patient, scan parameters, sex and age were recorded. Exposed TLDs were read by a manual TLD reader. Results: The verage absorbed dose of the thyroid, as well as the lenses of the left and right eyes were 5.89±1.74, 15.84±2.81 and 16.25±2.57, respectively, for the pediatric patients and 5.00±1.17, 17.64±1.69 and 24.41±1.89 for adults. Patient-specific organ doses were influenced by the scanned region, scan protocol and patient's age. Conclusion: In the present study, the mean eye dose was much lower than the 500 mGy threshold recommended by International Commission on Radiological Protection (ICRP) for lens of the eye damage, thus, it appears to be clinically safe. While CT scan remains a crucial tool, further dose reduction can be achieved by controlling different factors affecting patient doses

    A Validation Study on Radiation properties of a Novel LiF: Mg, Ti Known as IAP-100

    No full text
    Introduction: LiF dosimeter has the most application in medicine. This study aimed to evaluate some dosimetric properties of a novel LiF: Mg, Ti. Materials and Methods: An ELEKTA Precise linear accelerator was used to calibrate dosimeters at 6 MV. In this survey, responses of dosimeters were evaluated up to 1000 cGy. Background effect was investigated in two different dosimeter states including irradiated and unirradiated.Thermoluminescence response dependence to dose rate was investigated, as well. Energy dependence was evaluated in diagnostic and therapeutic ranges. Furthermore, fading effect was evaluated by reading the dosimeters every 2 h up to 12 h post-irradiation.  Results: The dosimeters had linear response up to 250 cGy. Readout values of dosimeters receiving 120 cGy at three dose rates of 21, 212, 425 cGy.min-1 were calculated equal to 125, 123, 121 cGy, respectively. The measured values of delivering 80, 120, and 150 cGy prescribed doses at 6 MV, 10 MV, and 15 MV were accurate at 6 MV and about 1.5 times higher than the prescribed doses at 10 and 15 MV. Thermoluminescence response in diagnostic energy range showed an uprising trend with increasing energy. Conclusion: The raising thermoluminescence response with increasing energy contradicts with the findings of Nunn. Due to the reproducibility and linear response of dosimeters in an acceptable dose range, they could be used in diagnostic and therapeutic fields. Effects of absorbed doses from background in low-dose studies, mainly in diagnostic radiology range, could be evaluated in more detail in future surveys
    corecore