13 research outputs found
Spatiotemporal modeling and model restructuration approaches in studies of intracellular signalling pathways
The main focus of the research is to understand the complex phenomena of cell transduction pathways and cell biology in a single cell. Mathematical modeling and experimental evaluation are widely used approaches for this kind of research. Firstly, A multiscale framework for protein-protein interaction has been established using Brownian dynamics algorithm. Sit specific feature, steric collision, diffusion, co-localization and complex formation with time and space has been included in this spatial modeling framework. By implementation of the time adaptive feature in this framework, the computation time reduces in an order of magnitude compared with traditional modeling framework. This multiscale Brownian framework has been used for the investigation FcεRI aggregation which is an important signaling pathway for immune cells. Using the spatial modeling framework, FcεRI aggregation in the presence of trivalent antigen showed consistent results with current experimental studies. Secondly, the rule-based modeling approach is an excellent way of performing large biochemical network modeling for a single cell as it considers the site-specific features. However, the major difficulty of rule-based modeling approach is combinatorial complexity. In this study, model restructuring approaches have been applied to overcome this problem for cell signaling pathway modeling. These mechanistic modeling approaches are very effective to model large network of signaling pathways together without compromising the accuracy. Finally, Cell size dependent cellular uptake study carried out using confocal microscopy and flow cytometer. To understand the particle uptake behavior with time and steady state condition, reaction-diffusion and kinetics model has been developed in these work. After a detailed analysis of experimental data and models, it showed that total particle uptake is increasing with cell size, however, particle flux is reducing in larger cells --Abstract, page iv
Stability of perovskite solar cells: issues and prospects
Even though power conversion efficiency has already reached 25.8%, poor stability is one of the major challenges hindering the commercialization of perovskite solar cells (PSCs). Several initiatives, such as structural modification and fabrication techniques by numerous ways, have been employed by researchers around the world to achieve the desired level of stability. The goal of this review is to address the recent improvements in PSCs in terms of structural modification and fabrication procedures. Perovskite films are used to provide a broad range of stability and to lose up to 20% of their initial performance. A thorough comprehension of the effect of the fabrication process on the device's stability is considered to be crucial in order to provide the foundation for future attempts. We summarize several commonly used fabrication techniques – spin coating, doctor blade, sequential deposition, hybrid chemical vapor, and alternating layer-by-layer. The evolution of device structure from regular to inverted, HTL free, and ETL including the changes in material utilization from organic to inorganic, as well as the perovskite material are presented in a systematic manner. We also aimed to gain insight into the functioning stability of PSCs, as well as practical information on how to increase their operational longevity through sensible device fabrication and materials processing, to promote PSC commercialization at the end
A Multiscale Algorithm for Spatiotemporal Modeling of Multivalent Protein-Protein Interaction
This article introduces a multiscale framework for spatiotemporal modeling of protein-protein interaction. Cellular protein molecules represent multivalent species that contain modular features, such as binding domains and phosphorylation motifs. The binding and transformations of these features occur at a small time and spatial scale. On the other hand, space and time involved in protein diffusion, colocalization, and formation of complexes could be relatively large. Here, we present an agent-based framework integrated with a multiscale Brownian Dynamics (BD) simulation algorithm. The framework employs spatial graphs to describe multivalent molecules and complexes with their site-specific details. By implementing a time-adaptive feature, the BD algorithm enables efficient computation while capturing the site-specific interactions of the diffusing species at the sub-nanometer scale. We demonstrate these capabilities by modeling two multivalent molecules, one representing a ligand and the other a receptor, in a two-dimensional plane (cell membrane). Using the model, we show that the algorithm can accelerate computation by orders of magnitudes in both concentrated and dilute regimes. We also show that the algorithm enables robust model predictions against a wide range of selection of time step sizes
Dissecting Particle Uptake Heterogeneity in a Cell Population using Bayesian Analysis
Individual cells in a solution display variable uptake of nanomaterials, peptides, and nutrients. Such variability reflects their heterogeneity in endocytic capacity. In a recent work, we have shown that the endocytic capacity of a cell depends on its size and surface density of endocytic components (transporters). We also demonstrated that in MDA-MB-231 breast cancer cells, the cell-surface transporter density (n) may decay with cell radius (r) following the power rule n ~ rα, where α ≈ −1. In this work, we investigate how n and r may independently contribute to the endocytic heterogeneity of a cell population. Our analysis indicates that the smaller cells display more heterogeneity because of the higher stochastic variations in n. By contrast, the larger cells display a more uniform uptake, reflecting less-stochastic variations in n. We provide analyses of these dependencies by establishing a stochastic model. Our analysis reveals that the exponent α in the above relationship is not a constant; rather, it is a random variable whose distribution depends on cell size r. Using Bayesian analysis, we characterize the cell-size-dependent distributions of α that accurately capture the particle uptake heterogeneity of MDA-MB-231 cells
Quantitative Analysis of the Correlation between Cell Size and Cellular Uptake of Particles
The size of a cell is central to many functions, including cellular communication and exchange of materials with the environment. This modeling and experimental study focused on understanding how the size of a cell determines its ability to uptake nanometer-scale extracellular materials from the environment. Several mechanisms in the cell plasma membrane mediate cellular uptake of nutrients, biomolecules, and particles. These mechanisms involve recognition and internalization of the extracellular molecules via endocytic components, such as clathrin-coated pits, vacuoles, and micropinocytic vesicles. Because the demand for an external resource could be different for cells of different sizes, the collective actions of these various endocytic routes should also vary based on the cell size. Here, using a reaction-diffusion model, we analyze single-cell data to interrogate the one/one mapping between the size of the MDA-MB 231 breast cancer cells and their ability to uptake nanoparticles. Our analysis indicates that under both reaction- and diffusion-controlled regimes, cellular uptake follows a linear relationship with the cell radius. Furthermore, this linear dependency is insensitive to particle size variation within 20-200 nm range. This result is counterintuitive because the general perception is that cellular uptake is proportional to the cell volume (mass) or surface area and hence follow a cubic or square relationship with the cell radius. A further analysis using our model reveals a potential mechanism underlying this linear relationship
Microcontroller Based Automotive Vehicle Anti- Theft Braking System
An estimated 300 million vehicles was stolen every year around the world. This has become a national problem today which also has some solutions. To solve this problem we have many options using microcontroller is the best option. In this project we demonstrated microcontroller based automotive braking system. Beside that it can also able to send the location of vehicles. The first one is introduced as the security system and second one is reporting system. For the first system we used microcontroller PIC16F887. Again the reporting system is based on the Global Positioning system (GPS) and Global System of Mobile (GSM) network. A vehicle can be tracked through GPS. This overall system not only brings a solution of prevent stealing vehicles but also show a practical use of GPS and GSM network. The proposed issues on this project are, making it useable for the vehicle, less expensive, and more accurate. In this era of modern technologies, when machines have become indispensable and each second translates into advancement, such microcontroller based anti-theft system can make life secure with a rise in human productivity
Chemical Composition of Essential Oil and in Vitro Biological Activities of Dryopteris marginalis L.
Green Synthesis of Lead Sulphide Nanoparticles for High-Efficiency Perovskite Solar Cell Applications
In this study, lead sulfide (PbS) nanoparticles were synthesized by the chemical precipitation method using Aloe Vera extract with PbCl2 and Thiourea (H2N-CS-NH2). The synthesized nanoparticles have been investigated using x-ray diffraction (XRD), UV-Vis, energy-dispersive x-ray spectroscopy (EDX), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRD and TEM results confirm that the films are in the cubic phase. The crystallite size, lattice constant, micro-strain, dislocation density, optical bandgap, etc. have been determined using XRD and UV-Vis for investigating the quality of prepared nanoparticles. The possible application of these synthesized nanoparticles in the solar cells was investigated by fabricating the thin films on an FTO-coated and bare glass substrate. The properties of nanoparticles were found to be nearly retained in the film state as well. The experimentally found properties of thin films have been implemented for perovskite solar cell simulation and current-voltage and capacitance-voltage characteristics have been investigated. The simulation results showed that PbS nanoparticles could be a potential hole transport layer for high-efficiency perovskite solar cell applications