2 research outputs found

    A novel design for a hybrid space manipulator

    Get PDF
    Described are the structural design, kinematics, and characteristics of a robot manipulator for space applications and use as an articulate and powerful space shuttle manipulator. Hybrid manipulators are parallel-serial connection robots that give rise to a multitude of highly precise robot manipulators. These manipulators are modular and can be extended by additional modules over large distances. Every module has a hemispherical work space and collective modules give rise to highly dexterous symmetrical work space. Some basic designs and kinematic structures of these robot manipulators are discussed, the associated direct and inverse kinematics formulations are presented, and solutions to the inverse kinematic problem are obtained explicitly and elaborated upon. These robot manipulators are shown to have a strength-to-weight ratio that is many times larger than the value that is currently available with industrial or research manipulators. This is due to the fact that these hybrid manipulators are stress-compensated and have an ultralight weight, yet, they are extremely stiff due to the fact that force distribution in their structure is mostly axial. Actuation is prismatic and can be provided by ball screws for maximum precision

    Deployable robotic woven wire structures and joints for space applications

    Get PDF
    Deployable robotic structures are basically expandable and contractable structures that may be transported or launched to space in a compact form. These structures may then be intelligently deployed by suitable actuators. The deployment may also be done by means of either airbag or spring-loaded typed mechanisms. The actuators may be pneumatic, hydraulic, ball-screw type, or electromagnetic. The means to trigger actuation may be on-board EPROMS, programmable logic controllers (PLCs) that trigger actuation based on some input caused by the placement of the structure in the space environment. The actuation may also be performed remotely by suitable remote triggering devices. Several deployable woven wire structures are examined. These woven wire structures possess a unique form of joint, the woven wire joint, which is capable of moving and changing its position and orientation with respect to the structure itself. Due to the highly dynamic and articulate nature of these joints the 3-D structures built using them are uniquely and highly expandable, deployable, and dynamic. The 3-D structure naturally gives rise to a new generation of deployable three-dimensional spatial structures
    corecore