21 research outputs found

    Campylobacter Infection as a Trigger for Guillain-Barré Syndrome in Egypt

    Get PDF
    BACKGROUND: Most studies of Campylobacter infection triggering Guillain-Barré Syndrome (GBS) are conducted in western nations were Campylobacter infection and immunity is relatively rare. In this study, we explored Campylobacter infections, Campylobacter serotypes, autoantibodies to gangliosides, and GBS in Egypt, a country where Campylobacter exposure is common. METHODS: GBS cases (n = 133) were compared to age- and hospital-matched patient controls (n = 374). A nerve conduction study was performed on cases and a clinical history, serum sample, and stool specimen obtained for all subjects. RESULTS: Most (63.3%) cases were demyelinating type; median age four years. Cases were more likely than controls to have diarrhea (29.5% vs. 22.5%, Adjusted Odds Ratio (ORa) = 1.69, P = 0.03), to have higher geometric mean IgM anti-Campylobacter antibody titers (8.18 vs. 7.25 P<0.001), and to produce antiganglioside antibodies (e.g., anti-Gd1a, 35.3 vs. 11.5, ORa = 4.39, P<0.0001). Of 26 Penner:Lior Campylobacter serotypes isolated, only one (41:27, C. jejuni, P = 0.02) was associated with GBS. CONCLUSIONS: Unlike results from western nations, data suggested that GBS cases were primarily in the young and cases and many controls had a history of infection to a variety of Campylobacter serotypes. Still, the higher rates of diarrhea and greater antibody production against Campylobacter and gangliosides in GBS patients were consistent with findings from western countries

    B memory cell responses to LPS, IVP and IpaB antigen after oral vaccination with Shigella sonnei vaccine candidates WRSs2 and WRSs3.

    No full text
    B memory (BM) cell responses were evaluated using peripheral blood mononuclear cells that were collected and cryopreserved during a Phase 1 trial of two live Shigella sonnei vaccine candidates WRSs2 and WRSs3. An ELISpot assay was used to measure IgG+ and IgA+ BM cell responses against S. sonnei LPS, IVP and IpaB antigens. Analysis of BM cell responses at baseline, and on days 28 and 56 post vaccination indicate that after a single oral dose of WRSs2 and WRSs3, both groups of vaccinees induced IgG+ and IgA+ BM cell responses that were variable in magnitude among subjects and reached significance to IVP and IpaB at several doses. The responses generally peaked at d28 after vaccination. The baseline as well as post-vaccination levels of IgA+ BM cells were relatively higher than IgG+ BM cells, but the maximum fold-increase at d28/d56 over baseline was greater for IgG+ than IgA+ BM cell responses. Furthermore, at the three highest vaccine doses, >60-90% of subjects were considered responders indicating a ≄2-fold higher IgG+ BM cell responses to IVP and IpaB post vaccination, while fewer subjects indicated the same level of response to LPS

    Genome Sequence of a Clinical Isolate of Campylobacter jejuni from Thailand▿ †

    No full text
    Campylobacter jejuni CG8486, which belongs to the HS4 complex, was isolated from a patient with inflammatory diarrhea in Thailand. This strain caused a diarrheal disease in ferrets comparable to that caused by C. jejuni strain 81-176, but it was much less invasive for epithelial cells in vitro than 81-176. Complete genome sequencing of CG8486 revealed a 1.65-Mb genome that was very similar to the other two published genomes of clinical isolates of C. jejuni, the genomes of 81-176 and NCTC 11168, with a limited number of CG8486-specific genes mapping outside the hypervariable carbohydrate biosynthesis loci. These data suggest that the genes required for induction of inflammatory diarrhea are among the genes shared by CG8486 and 81-176 but that either major changes in the carbohydrate loci and/or more subtle changes in other genes may modulate virulence

    In Vivo Phase Variation and Serologic Response to Lipooligosaccharide of Campylobacter jejuni in Experimental Human Infection

    No full text
    Some Campylobacter jejuni strains which exhibit mimicry of gangliosides in their lipooligosaccharides (LOSs) are associated with development of Guillain-Barré syndrome, which complicates the selection of a suitable C. jejuni strain in a live-attenuated vaccine. C. jejuni 81-176 is the most well characterized strain available, but structurally, LOS of C. jejuni 81-176 exhibits mimicry of predominantly GM(2) and GM(3) gangliosides. We compared the antiganglioside human serologic responses of 22 volunteers post-oral vaccination (two-dose series, 14 days apart) with a killed whole-cell C. jejuni vaccine, those of volunteers (22 following initial challenge and 5 upon rechallenge) experimentally infected with the homologous C. jejuni vaccine strain 81-176, and those of 12 volunteers used as controls (placebo recipients). All volunteers were evaluated using thin-layer chromatography immuno-overlay and a panel of nine gangliosides at days 0, 21, and 28 either postvaccination or postinoculation. Antiganglioside antibodies were identified at baseline in 6 of the 61 volunteers (9.8%). There were no antiganglioside antibodies observed following vaccination or experimental infection rechallenge. Evidence of seroconversion was observed in 2 of 22 (9.1%) in the initial infection challenge group, comparable to 1 of 12 (8.3%) in the placebo recipients. Additional testing of seven selected volunteers in the initial challenge group at days 0, 3, 7, 10, 21, 28, and 60 showed that when antiganglioside antibodies occurred (mostly anti-GM(1) and -GM(2)), responses were weak and transient. Furthermore, evidence from serologic probing of LOSs of isolates recovered from stools of six volunteers indicated that the isolates had undergone antigenic phase variation in ganglioside mimicry during passage in vivo. Collectively, with the exception of one volunteer with anti-GM(2) antibodies at day 60, the results show an absence of persistent antiganglioside antibodies after experimental infection with C. jejuni or following administration of a killed C. jejuni whole-cell oral vaccine, although LOS phase variation occurred

    Capsule Polysaccharide Conjugate Vaccine against Diarrheal Disease Caused by Campylobacter jejuni▿ †

    No full text
    The capsule polysaccharide (CPS) of Campylobacter jejuni is one of the few identified virulence determinants of this important human pathogen. Since CPS conjugate vaccines have been so effective against other mucosal pathogens, we evaluated this approach using CPSs from two strains of C. jejuni, 81-176 (HS23 and HS36 serotype complex) and CG8486 (HS4 serotype complex). The CPSs of 81-176 and CG8486 were independently linked to the carrier protein CRM197 by reductive amination between an aldehyde(s), strategically created at the nonreducing end of each CPS, and accessible amines of CRM197. In both cases, the CPS:CRM197 ratio used was 2:1 by weight. Mass spectrometry and gel electrophoresis showed that on average, each glycoconjugate preparation contained, at least in part, two to five CPSs attached to one CRM197. When administered subcutaneously to mice, these vaccines elicited robust immune responses and significantly reduced the disease following intranasal challenge with the homologous strains of C. jejuni. The CPS81-176-CRM197 vaccine also provided 100% protection against diarrhea in the New World monkey Aotus nancymaae following orogastric challenge with C. jejuni 81-176
    corecore