17 research outputs found

    Optomechanical state reconstruction and nonclassicality verification beyond the resolved-sideband regime

    Get PDF
    Quantum optomechanics uses optical means to generate and manipulate quantum states of motion of mechanical resonators. This provides an intriguing platform for the study of fundamental physics and the development of novel quantum devices. Yet, the challenge of reconstructing and verifying the quantum state of mechanical systems has remained a major roadblock in the field. Here, we present a novel approach that allows for tomographic reconstruction of the quantum state of a mechanical system without the need for extremely high quality optical cavities. We show that, without relying on the usual state transfer presumption between light an mechanics, the full optomechanical Hamiltonian can be exploited to imprint mechanical tomograms on a strong optical coherent pulse, which can then be read out using well-established techniques. Furthermore, with only a small number of measurements, our method can be used to witness nonclassical features of mechanical systems without requiring full tomography. By relaxing the experimental requirements, our technique thus opens a feasible route towards verifying the quantum state of mechanical resonators and their nonclassical behaviour in a wide range of optomechanical systems.Comment: 12 pages + 9 pages of appendices, 4 figure

    Operational Gaussian Schmidt-Number Witnesses

    Full text link
    The general class of Gaussian Schmidt-number witness operators for bipartite systems is studied. It is shown that any member of this class is reducible to a convex combination of two types of Gaussian operators using local operations and classical communications. This gives rise to a simple operational method, which is solely based on measurable covariance matrices of quantum states. Our method bridges the gap between theory and experiment of entanglement quantification. In particular, we certify lower bounds of the Schmidt number of squeezed thermal and phase-randomized squeezed vacuum states, as examples of Gaussian and non-Gaussian quantum states, respectively.Comment: 9 pages, 4 figure

    Quantum Correlations in Nonlocal BosonSampling

    Full text link
    Determination of the quantum nature of correlations between two spatially separated systems plays a crucial role in quantum information science. Of particular interest is the questions of if and how these correlations enable quantum information protocols to be more powerful. Here, we report on a distributed quantum computation protocol in which the input and output quantum states are considered to be classically correlated in quantum informatics. Nevertheless, we show that the correlations between the outcomes of the measurements on the output state cannot be efficiently simulated using classical algorithms. Crucially, at the same time, local measurement outcomes can be efficiently simulated on classical computers. We show that the only known classicality criterion violated by the input and output states in our protocol is the one used in quantum optics, namely, phase-space nonclassicality. As a result, we argue that the global phase-space nonclassicality inherent within the output state of our protocol represents true quantum correlations.Comment: 5 pages, 1 figure, comments are very welcome

    Quantum Correlations and Global Coherence in Distributed Quantum Computing

    Full text link
    Deviations from classical physics when distant quantum systems become correlated are interesting both fundamentally and operationally. There exist situations where the correlations enable collaborative tasks that are impossible within the classical formalism. Here, we consider the efficiency of quantum computation protocols compared to classical ones as a benchmark for separating quantum and classical resources and argue that the computational advantage of collaborative quantum protocols in the discrete variable domain implies the nonclassicality of correlations. By analysing a toy model, it turns out that this argument implies the existence of quantum correlations distinct from entanglement and discord. We characterize such quantum correlations in terms of the net global coherence resources inherent within quantum states and show that entanglement and discord can be understood as special cases of our general framework. Finally, we provide an operational interpretation of such correlations as those allowing two distant parties to increase their respective local quantum computational resources only using locally incoherent operations and classical communication.Comment: Minor modifications and correction

    Measurement-Device-Independent Approach to Entanglement Measures

    Get PDF
    Within the context of semiquantum nonlocal games, the trust can be removed from the measurement devices in an entanglement-detection procedure. Here we show that a similar approach can be taken to quantify the amount of entanglement. To be specific, first, we show that in this context a small subset of semiquantum nonlocal games is necessary and sufficient for entanglement detection in the LOCC paradigm. Second, we prove that the maximum pay-off for these games is a universal measure of entanglement which is convex and continuous. Third, we show that for the quantification of negative-partial-transpose entanglement, this subset can be further reduced down to a single arbitrary element. Importantly, our measure is operationally accessible in a measurement-device-independent way by construction. Finally, our approach is simply extended to quantify the entanglement within any partitioning of multipartite quantum states.Comment: 8 pages, 2 figures, the main result is split into two theorems with slight modifications, extended proof

    Quantum Correlations: A Modern Augmentation

    Get PDF

    Locally incoherent witnessing of quantum coherence

    Get PDF

    Witnessing entanglement in trapped-ion quantum error correction under realistic noise

    Full text link
    Quantum Error Correction (QEC) exploits redundancy by encoding logical information into multiple physical qubits. In current implementations of QEC, sequences of non-perfect two-qubit entangling gates are used to codify the information redundantly into multipartite entangled states. Also, to extract the error syndrome, a series of two-qubit gates are used to build parity-check readout circuits. In the case of noisy gates, both steps cannot be performed perfectly, and an error model needs to be provided to assess the performance of QEC. We present a detailed microscopic error model to estimate the average gate infidelity of two-qubit light-shift gates used in trapped-ion platforms. We analytically derive leading-error contributions in terms of microscopic parameters and present effective error models that connect the error rates typically used in phenomenological accounts to the microscopic gate infidelities hereby derived. We then apply this realistic error model to quantify the multipartite entanglement generated by circuits that act as QEC building blocks. We do so by using entanglement witnesses, complementing in this way the recent studies by exploring the effects of a more realistic microscopic noise.Comment: 24 pages, 10 figures, 7 table

    Efficient and robust certification of genuine multipartite entanglement in noisy quantum error correction circuits

    Full text link
    Ensuring the correct functioning of quantum error correction (QEC) circuits is crucial to achieve fault tolerance in realistic quantum processors subjected to noise. The first checkpoint for a fully operational QEC circuit is to create genuine multipartite entanglement across all subsystems of physical qubits. We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME) that is efficient in the number of subsystems and, importantly, robust against experimental noise and imperfections. Specifically, we prove that the detection of entanglement in a linear number of bipartitions by a number of measurements that also scales linearly, suffices to certify GME. Moreover, our method goes beyond the standard procedure of separating the state from the convex hull of biseparable states, yielding an improved finesse and robustness compared to previous techniques. We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version. In particular, we subject the circuits to combinations of three types of noise, namely, uniform depolarizing noise, two-qubit gate depolarizing noise, and bit-flip measurement noise. We numerically compare our method with the standard, yet generally inefficient, fidelity test and to a pair of efficient witnesses, verifying the increased robustness of our method. Last but not least, we provide the full translation of our analysis to a trapped-ion native gate set that makes it suitable for experimental applications.Comment: 24 pages including appendices, 19 Figures and 1 Tabl
    corecore