6 research outputs found

    Delamination-and electromigration-related failures in solar panels—a review

    Get PDF
    The reliability of photovoltaic (PV) modules operating under various weather conditions attracts the manufacturer’s concern since several studies reveal a degradation rate higher than 0.8% per year for the silicon-based technology and reached up to 2.76% per year in a harsh climate. The lifetime of the PV modules is decreased because of numerous degradation modes. Electromigration and delamination are two failure modes that play a significant role in PV modules’ output power losses. The correlations of these two phenomena are not sufficiently explained and understood like other failures such as corrosion and potential-induced degradation. Therefore, in this review, we attempt to elaborate on the correlation and the influence of delamination and electromigration on PV module components such as metallization and organic materials to ensure the reliability of the PV modules. Moreover, the effects, causes, and the sites that tend to face these failures, particularly the silicon solar cells, are explained in detail. Elsewhere, the factors of aging vary as the temperature and humidity change from one country to another. Hence, accelerated tests and the standards used to perform the aging test for PV modules have been covered in this review

    Elucidating the Effects of Interconnecting Layer Thickness and Bandgap Variations on the Performance of Monolithic Perovskite/Silicon Tandem Solar Cell by wxAMPS

    No full text
    Funding Information: Authors acknowledge the Ministry of Higher Education of Malaysia (MOHE) for the support given with the HICoE grant for this research with the code 2022003HICOE at the iRMC of Universiti Tenaga Nasional (UNITEN). Authors also deeply appreciate the publication support from the iRMC of UNITEN with the code “BOLDREFRESH2025—CENTRE OF EXCELLENCE”. The authors would like to thank Rockett, Yiming Liu of UIUC, and Fonash of PSU for providing wxAMPS as a free software simulator. Ili Salwani Mohamad is financially supported by the MOHE and Universiti Malaysia Perlis (UniMAP), Malaysia. Publisher Copyright: © 2023 by the authors.In this study, we investigated the pathways for integration of perovskite and silicon solar cells through variation of the properties of the interconnecting layer (ICL). The user-friendly computer simulation software wxAMPS was used to conduct the investigation. The simulation started with numerical inspection of the individual single junction sub-cell, and this was followed by performing an electrical and optical evaluation of monolithic 2T tandem PSC/Si, with variation of the thickness and bandgap of the interconnecting layer. The electrical performance of the monolithic crystalline silicon and CH3NH3PbI3 perovskite tandem configuration was observed to be the best with the insertion of a 50 nm thick (Eg ≥ 2.25 eV) interconnecting layer, which directly contributed to the optimum optical absorption coverage. These design parameters improved the optical absorption and current matching, while also enhancing the electrical performance of the tandem solar cell, which benefited the photovoltaic aspects through lowering the parasitic loss.Peer reviewe

    Delamination-and Electromigration-Related Failures in Solar Panels—A Review

    No full text
    The reliability of photovoltaic (PV) modules operating under various weather conditions attracts the manufacturer’s concern since several studies reveal a degradation rate higher than 0.8% per year for the silicon-based technology and reached up to 2.76% per year in a harsh climate. The lifetime of the PV modules is decreased because of numerous degradation modes. Electromigration and delamination are two failure modes that play a significant role in PV modules’ output power losses. The correlations of these two phenomena are not sufficiently explained and understood like other failures such as corrosion and potential-induced degradation. Therefore, in this review, we attempt to elaborate on the correlation and the influence of delamination and electromigration on PV module components such as metallization and organic materials to ensure the reliability of the PV modules. Moreover, the effects, causes, and the sites that tend to face these failures, particularly the silicon solar cells, are explained in detail. Elsewhere, the factors of aging vary as the temperature and humidity change from one country to another. Hence, accelerated tests and the standards used to perform the aging test for PV modules have been covered in this review

    Numerical Insights into the Influence of Electrical Properties of n-CdS Buffer Layer on the Performance of SLG/Mo/p-Absorber/n-CdS/n-ZnO/Ag Configured Thin Film Photovoltaic Devices

    No full text
    A CdS thin film buffer layer has been widely used as conventional n-type heterojunction partner both in established and emerging thin film photovoltaic devices. In this study, we perform numerical simulation to elucidate the influence of electrical properties of the CdS buffer layer, essentially in terms of carrier mobility and carrier concentration on the performance of SLG/Mo/p-Absorber/n-CdS/n-ZnO/Ag configured thin film photovoltaic devices, by using the Solar Cell Capacitance Simulator (SCAPS-1D). A wide range of p-type absorber layers with a band gap from 0.9 to 1.7 eV and electron affinity from 3.7 to 4.7 eV have been considered in this simulation study. For an ideal absorber layer (no defect), the carrier mobility and carrier concentration of CdS buffer layer do not significantly alter the maximum attainable efficiency. Generally, it was revealed that for an absorber layer with a conduction band offset (CBO) that is more than 0.3 eV, Jsc is strongly dependent on the carrier mobility and carrier concentration of the CdS buffer layer, whereas Voc is predominantly dependent on the back contact barrier height. However, as the bulk defect density of the absorber layer is increased from 1014 to 1018 cm−3, a CdS buffer layer with higher carrier mobility and carrier concentration is an imperative requirement to a yield device with higher conversion efficiency and a larger band gap-CBO window for realization of a functional device. Most tellingly, simulation outcomes from this study reveal that electrical properties of the CdS buffer layer play a decisive role in determining the progress of emerging p-type photo-absorber layer materials, particularly during the embryonic device development stage

    Ge-Rich SiGe Thin Film Deposition By Co-Sputtering In In-Situ And Ex-Situ Solid Phase Crystallization For Photovoltaic Applications

    No full text
    This study investigates the properties of high Ge content silicon-germanium thin films in the non-hydrogenated state (Ge-rich SiGe) deposited on glass by RF magnetron co-sputtering in both in-situ and ex-situ solid phase crystallization (SPC) at various temperatures, such as RT to 550 °C. The structural and optical characteristics of SiGe films have been explored systematically by optimizing growth temperature. Atomic composition of films was determined by EDX, which showed up to 77 at% of Ge. Structural properties were characterized by XRD, which revealed all samples to be in amorphous nature. The results from Raman and UV–VIS–IR transmittance measurements showed that the properties of amorphous Si0.23Ge0.77 films improved at 450 °C in both in-situ and ex-situ SPC processes. In addition, EDX exposed an advantage of in-situ process over ex-situ due to the incorporation of oxygen during ex-situ thermal annealing. Possible deposition at low substrate temperature as found here suggests that these Si0.23Ge0.77 films have a substantial potential to be used in thin film Si-based solar cells

    Tunable morphology and band gap alteration of CuO-ZnO nanostructures based photocathode for solar photoelectrochemical cells

    No full text
    A homogeneous CuO-ZnO nanostructure with tunable morphology and optical band structure is successfully synthesized via a hydrothermal method under the different dopant mole ratios of Cu. The robust correlation between the crystallite size, surface morphology, optical band gap alteration of the synthesized CuO-ZnO and its performance in photoelectrochemical (PEC) activity are investigated and compared to the reference ZnO based photocathode. In this report, it is found that the morphology of hexagonal ZnO nanorod is changed to nanosheet and vertically align CuO-ZnO based nanograss after the Cu incorporation. This result is mainly due to the composition phase change after the excessive incorporation of Cu metal into ZnO lattice. Furthermore, the optical band gap of the sample also presented a bathochromic shifted after the Cu insertion. The measurements on PEC activity of CuO-ZnO nanostructure was performed under the irradiation of a 100 mWcm−2 Xenon light in 0.5M Na2SO4 electrolyte. Among the sample, 0 Zn:1 Cu exhibited a highest photocurrent density which is 5 fold as compared to its reference ZnO samples. This finding could be due to the highest surface active area and lowest optical energy band gap in the 0 Zn:1 Cu nanograss that eventually contributes to a high free electron density that facilitates the charge transport in the photoelectrochemical cells. This novel approach could provide an alternative to the future solar hydrogenation application
    corecore