22 research outputs found

    An Ongoing Futuristic Career of Metal–Organic Frameworks and Ionic Liquids, A Magical Gateway to Capture CO<sub>2</sub>; A Critical Review

    Get PDF
    Carbon capture and storage (CCS) technologies are the “knight in shining armor” that can save humanity from burnout in the longer term, minimizing damage from CO2 emissions by keeping them out of the atmosphere. Metal–organic frameworks (MOFs) have received a promising career for CO2 capture due to their high porosity, surface area, excellent metal-to-ligand interaction, and good affinity to capture CO2 molecules. On the other hand, Ionic liquids (ILs) as emerging solvents have reported a significant influence on CO2 solubility due to their wide range of tunability in the selection of a variety of cations and anions along with the advantage of nonvolatility, high thermal stability, and nonflammability. The current Review highlights the recent progress and ongoing careers of employing MOFs and ILs in carbon capture technologies before their commercialization on a large scale. A brief overview of CO2 capturing using MOFs and ILs is given under the influence of their possible functionalization to enhance their CO2 separation. Information on the possible integration of MOFs-ILs as a composite system or membrane-based gas separation is also presented in detail. The integration has a high potential to capture CO2 while minimizing the unit operation costs for a stable, efficient, and smooth industrial gas separation operation. Present work attempts to link the chemistry of MOF and IL and their successful hybridization (MOF-IL composite) to process the economics for CO2 capture

    Editors’ Introduction: An Overview of the Educational Administration and Leadership Curriculum: Traditions of Islamic Educational Administration and Leadership in Higher Education

    Get PDF
    This chapter provides an overview of several topics relevant to constructing an approach to teaching educational administration and leadership in Muslim countries. First, it places the topic in the context of the changing nature and critiques of the field that argue for a greater internationalisation to both resist some of the negative aspects of globalisation and to represent countries’ traditions in the professional curriculum. Then, it identifies literature that presents the underlying principles and values of Islamic education that guide curriculum and pedagogy and shape its administration and leadership including the Qur’an and Sunnah and the classical educational literature which focuses on aims, values and goals of education as well as character development upon which a ‘good’ society is built. This is followed by a section on the Islamic administration and leadership traditions that are relevant to education, including the values of educational organisations and how they should be administered, identifying literature on the distinctive Islamic traditions of leadership and administrator education and training as it applies to education from the establishment of Islam and early classical scholars and senior administrators in the medieval period who laid a strong foundation for a highly sophisticated preparation and practice of administration in philosophical writings and the Mirrors of Princes writings, and subsequent authors who have built upon it up to the contemporary period. The final section provides an overview of the chapters in this collection

    Ibrahim's Bridge

    No full text
    general view, Water-level view, including Purana Pul Darwaza, 1890

    Ibrahim's Bridge

    No full text
    general view, view toward southwest, showing Purana Pul Darwaza at the far end, 198

    Ibrahim's Bridge

    No full text
    detail, view of a plaque on the Purana Pul Darwaza marked "High Flood Level 28th September 1908", 198

    Ibrahim's Bridge

    No full text
    general view, view toward east, Purana Pul darwaza in the background, 198

    Ibrahim's Bridge

    No full text
    general view, view toward west, showing Purana Pul Darwaza at the far end and a Hindu temple on the right, 198

    Recent Advances in the Synthesis, Application and Economic Feasibility of Ionic Liquids and Deep Eutectic Solvents for CO<sub>2</sub> Capture: A Review

    No full text
    Global warming is one of the major problems in the developing world, and one of the major causes of global warming is the generation of carbon dioxide (CO2) because of the burning of fossil fuels. Burning fossil fuels to meet the energy demand of households and industries is unavoidable. The current commercial and experimental techniques used for capturing and storing CO2 have serious operational and environmental constraints. The amine-based absorption technique for CO2 capture has a low absorption and desorption ratio, and the volatile and corrosive nature of the solvent further complicates the situation. To overcome all of these problems, researchers have used ionic liquids (ILs) and deep eutectic solvents (DESs) as a replacement for commercial amine-based solvents. ILs and deep eutectic solvents are tunable solvents that have a very low vapor pressure, thus making them an ideal medium for CO2 capture. Moreover, most ionic liquids and deep eutectic solvents have low toxicity and can be recycled without a significant loss in their CO2 capture capability. This paper first gives a brief overview of the ILs and DESs used for CO2 capture, followed by the functionalization of ILs to enhance CO2 capture. Moreover, it provides details on the conversion of CO2 into different valuable products using ILs and DESs, along with an economic perspective on using both of these solvents for CO2 capture. Furthermore, it provides insight into the difficulties and drawbacks that are faced by industries when using ILs and DESs

    Life forms, leaf size spectra, regeneration capacity and diversity of plant species grown in the Thandiani forests, district Abbottabad, Khyber Pakhtunkhwa, Pakistan

    No full text
    The life form and leaf size spectra of plant species of the Thandiani forests, district Abbottabad, were studied during the summer of 2013. These forests host 252 plant species of 97 families. Biological spectra showed that Hemicryptophytes (80 spp., 31.74%) were dominant followed by Megaphanerophytes (51 spp., 20.24%), Therophytes (49 spp., 19.44%) and Nanophanerophytes (45 spp., 17.86). Hemicryptophytes are the indicators of cold temperate vegetation. At the lower elevations, Megaphanerophytes and Nanophanerophytes were dominant which confirm trees as dominant habit form due to high soil depth, moisture and temperature factors. Data on Leaf spectra in the area showed that Microphyllous (88 spp., 34.92%) species were dominant followed by Leptophyllous (74 spp., 29.36%) and Nanophyllous (60 spp., 23.80%). The Microphyllous plants again are the indicator of cold temperate zone as the area is situated at an elevation of 1191–2626 m. Similarly, Nanophylls were dominant at lower elevations. Data on family importance values and diversity among various communities were also recorded. Life form and Leaf spectra studies could be used to understand the micro climatic variation of the region

    Leaf micromorphological adaptations of resurrection ferns in Northern Pakistan

    No full text
    The resurrection plant species, termed desiccation-tolerant plants have evolved remarkable ability to withstand extreme dehydration and rapid rehydration of vegetative tissue without damage. Pteridophytes include almost 70 desiccation tolerant species, and there is limited information of vegetative desiccation tolerance in ferns. A field examination of the representatives of the ferns flora of the Northern Pakistan disclosed 5 ferns species belonging to 2 genera with foliage which can revive after dehydration. These species are Asplenium dalhousiae, Asplenium ceterach, Cheilanthes acrostica, Cheilanthes bicolor, and Cheilanthes nitidula. We undertook a comprehensive leaf micromorphological investigation in all the five resurrection fern species. The study were accomplished using light microscopy (LM) and scanning electron microscopy (SEM). The detailed investigation of adaxial and abaxial leaf surfaces revealed species specific variation in the size and number of epidermal cells, size of stomata, and stomatal pore, stomatal density, and stomatal index and other foliar micromorphological features. In all studied species, adaxial surface lack stomata, i.e., all species are hypostomatic, stomata is polocytic, and epidermal cells shape in all species on both surface is similar, and are irregular shaped. The quantified leaf micromorphological traits are discussed in order to detect their possible role in the desiccation tolerance of resurrection fern species
    corecore