20,556 research outputs found

    Interplay of the exciton and electron-hole plasma recombination on the photoluminescence dynamics in bulk GaAs

    Full text link
    We present a systematic study of the exciton/electron-hole plasma photoluminescence dynamics in bulk GaAs for various lattice temperatures and excitation densities. The competition between the exciton and electron-hole pair recombination dominates the onset of the luminescence. We show that the metal-to-insulator transition, induced by temperature and/or excitation density, can be directly monitored by the carrier dynamics and the time-resolved spectral characteristics of the light emission. The dependence on carrier density of the photoluminescence rise time is strongly modified around a lattice temperature of 49 K, corresponding to the exciton binding energy (4.2 meV). In a similar way, the rise-time dependence on lattice temperature undergoes a relatively abrupt change at an excitation density of 120-180x10^15 cm^-3, which is about five times greater than the calculated Mott density in GaAs taking into account many body corrections.Comment: 15 pages, 7 figures, submitted to Phys. Rev.

    Optimizing photon indistinguishability in the emission from incoherently-excited semiconductor quantum dots

    Full text link
    Most optical quantum devices require deterministic single-photon emitters. Schemes so far demonstrated in the solid state imply an energy relaxation which tends to spoil the coherent nature of the time evolution, and with it the photon indistinguishability. We focus our theoretical investigation on semiconductor quantum dots embedded in microcavities. Simple and general relations are identified between the photon indistinguishability and the collection efficiency. The identification of the key parameters and of their interplay provides clear indications for the device optimization

    Transient quantum evolution of 2D electrons under photoexcitation of a deep center

    Full text link
    We have considered the ballistic propagation of the 2D electron Wigner distribution, which is excited by an ultrashort optical pulse from a short-range impurity into the first quantized subband of a selectively-doped heterostructure with high mobility. Transient ionization of a deep local state into a continuum conduction c-band state is described. Since the quantum nature of the photoexcitation, the Wigner distribution over 2D plane appears to be an alternating-sign function. Due to a negative contribution to the Wigner function, the mean values (concentration, energy, and flow) demonstrate an oscillating transient evolution in contrast to the diffusive classical regime of propagation.Comment: 8 pages, 6 figures, pape

    Fully quantum-mechanical treatment of proton-hydrogen scattering

    Get PDF
    © Published under licence by IOP Publishing Ltd. A fully quantum-mechanical convergent close-coupling approach to proton collisions with atomic hydrogen has been developed. Cross sections for target ionisation and electron capture by the projectile have been calculated in the energy range from 20 keV to 1 MeV. Calculated electron capture cross sections are in good agreement with the experiment, however for ionisation discrepancies between theory and experiment at intermediate energies still remain

    Scaling and Formulary cross sections for ion-atom impact ionization

    Full text link
    The values of ion-atom ionization cross sections are frequently needed for many applications that utilize the propagation of fast ions through matter. When experimental data and theoretical calculations are not available, approximate formulas are frequently used. This paper briefly summarizes the most important theoretical results and approaches to cross section calculations in order to place the discussion in historical perspective and offer a concise introduction to the topic. Based on experimental data and theoretical predictions, a new fit for ionization cross sections is proposed. The range of validity and accuracy of several frequently used approximations (classical trajectory, the Born approximation, and so forth) are discussed using, as examples, the ionization cross sections of hydrogen and helium atoms by various fully stripped ions.Comment: 46 pages, 8 figure

    Coupling Transcriptional State to Large-Scale Repeat Expansions in Yeast

    Get PDF
    SummaryExpansions of simple DNA repeats cause numerous hereditary disorders in humans. Replication, repair, and transcription are implicated in the expansion process, but their relative contributions are yet to be distinguished. To separate the roles of replication and transcription in the expansion of Friedreich’s ataxia (GAA)n repeats, we designed two yeast genetic systems that utilize a galactose-inducible GAL1 promoter but contain these repeats in either the transcribed or nontranscribed region of a selectable cassette. We found that large-scale repeat expansions can occur in the lack of transcription. Induction of transcription strongly elevated the rate of expansions in both systems, indicating that active transcriptional state rather than transcription through the repeat per se affects this process. Furthermore, replication defects increased the rate of repeat expansions irrespective of transcriptional state. We present a model in which transcriptional state, linked to the nucleosomal density of a region, acts as a modulator of large-scale repeat expansions

    Adsorption of iron ions from palm oil mill effluent using novel adsorbent of alginate–mangrove composite beads coated by chitosan

    Get PDF
    This study was about the investigation of the removal of iron ions from Palm Oil Mill Effluent (POME) by using novel adsorbent which is Alginate–Mangrove Composite Beads Coated by Chitosan (AMCBCC). The adsorbent was characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM) with Energy Dispersive X-ray Spectroscopy (EDX) to prove the successful coating by Chitosan and also to provide an evidence of iron ions were adsorbed on the surface of the beads. Batch studies were conducted by using different parameters, such as pH, dosage, contact time, and initial concentration. It was found that at pH value of 3, 300 g/L of AMCBCC concentration, and a contact time of 72 hours the maximum removal of iron ions was 92.7%. The isotherm equilibrium data were followed Freundlich isotherm model and the adsorption kinetic data were well fitted by the pseudo second order
    corecore