34,906 research outputs found
An Experiment and Detection Scheme for Cavity-based Cold Dark Matter Searches
A resonance detection scheme and some useful ideas for cavity-based searches
of light cold dark matter particles (such as axions) are presented, as an
effort to aid in the on-going endeavors in this direction as well as for future
experiments, especially in possibly developing a table-top experiment. The
scheme is based on our idea of a resonant detector, incorporating an integrated
Tunnel Diode (TD) and a GaAs HEMT/HFET (High Electron Mobility
Transistor/Heterogenous FET) transistor amplifier, weakly coupled to a cavity
in a strong transverse magnetic field. The TD-amplifier combination is
suggested as a sensitive and simple technique to facilitate resonance detection
within the cavity while maintaining excellent noise performance, whereas our
proposed Halbach magnet array could serve as a low-noise and permanent solution
replacing the conventional electromagnets scheme. We present some preliminary
test results which demonstrate resonance detection from simulated test signals
in a small optimal axion mass range with superior Signal-to-Noise Ratios (SNR).
Our suggested design also contains an overview of a simpler on-resonance dc
signal read-out scheme replacing the complicated heterodyne readout. We believe
that all these factors and our propositions could possibly improve or at least
simplify the resonance detection and read-out in cavity-based DM particle
detection searches (and other spectroscopy applications) and reduce the
complications (and associated costs), in addition to reducing the
electromagnetic interference and background.Comment: 22 pages, 7 figure
Deformed Complex Hermite Polynomials
We study a class of bivariate deformed Hermite polynomials and some of their
properties using classical analytic techniques and the Wigner map. We also
prove the positivity of certain determinants formed by the deformed
polynomials. Along the way we also work out some additional properties of the
(undeformed) complex Hermite polynomials and their relationships to the
standard Hermite polynomials (of a single real variable).Comment: 12 page
Scaling and Formulary cross sections for ion-atom impact ionization
The values of ion-atom ionization cross sections are frequently needed for
many applications that utilize the propagation of fast ions through matter.
When experimental data and theoretical calculations are not available,
approximate formulas are frequently used. This paper briefly summarizes the
most important theoretical results and approaches to cross section calculations
in order to place the discussion in historical perspective and offer a concise
introduction to the topic. Based on experimental data and theoretical
predictions, a new fit for ionization cross sections is proposed. The range of
validity and accuracy of several frequently used approximations (classical
trajectory, the Born approximation, and so forth) are discussed using, as
examples, the ionization cross sections of hydrogen and helium atoms by various
fully stripped ions.Comment: 46 pages, 8 figure
Large-amplitude chirped coherent phonons in tellurium mediated by ultrafast photoexcited carrier diffusion
We report femtosecond time-resolved reflectivity measurements of coherent
phonons in tellurium performed over a wide range of temperatures (3K to 296K)
and pump laser intensities. A totally symmetric A coherent phonon at 3.6
THz responsible for the oscillations in the reflectivity data is observed to be
strongly positively chirped (i.e, phonon time period decreases at longer
pump-probe delay times) with increasing photoexcited carrier density, more so
at lower temperatures. We show for the first time that the temperature
dependence of the coherent phonon frequency is anomalous (i.e, increasing with
increasing temperature) at high photoexcited carrier density due to
electron-phonon interaction. At the highest photoexcited carrier density of
1.4 10cm and the sample temperature of 3K, the
lattice displacement of the coherent phonon mode is estimated to be as high as
0.24 \AA. Numerical simulations based on coupled effects of optical
absorption and carrier diffusion reveal that the diffusion of carriers
dominates the non-oscillatory electronic part of the time-resolved
reflectivity. Finally, using the pump-probe experiments at low carrier density
of 6 10 cm, we separate the phonon anharmonicity to
obtain the electron-phonon coupling contribution to the phonon frequency and
linewidth.Comment: 22 pages, 6 figures, submitted to PR
Dynamics of a nanowire superlattice in an ac electric field
With a one-band envelope function theory, we investigate the dynamics of a
finite nanowire superlattice driven by an ac electric field by solving
numerically the time-dependent Schroedinger equation. We find that for an ac
electric field resonant with two energy levels located in two different
minibands, the coherent dynamics in nanowire superlattices is much more complex
as compared to the standard two-level description. Depending on the energy
levels involved in the transitions, the coherent oscillations exhibit different
patterns. A signature of barrier-well inversion phenomenon in nanowire
superlattices is also obtained.Comment: 14 pages, 4 figure
Design of Subsurface Geodrain for Automated Industrial Unit – Case Study
This paper describes the pre-construction modeling for design and post-construction evaluation of subsurface drainage systems for an industrial plant. Rajshree Polyfil Ltd has a polyester filament manufacturing plant spread over 50 hectare area in Bharuch district of Gujarat State, India. The plant is fully automatic and robotics operated. The cable duct for control system was laid below formation level. The seepage water was observed in the cable trench and nearby vicinity. This seriously affects the functioning of computer controlled production system. Preliminary investigation revealed that the ground water level was around 1.0m depth below formation level, which was more than 15m depth during the construction of unit. Detailed subsurface investigations and field permeability tests are carried out. Subsurface drainage system was designed and its performance was estimated prior to construction of drain with the help of computer modeling using software MODFLOW. The model area was divided in three to five layers having different permeability values obtained from field test. After construction of subsurface geodrain, discharge was measured and water level was also measured at few piezometers installed near the drain. It is found that the performance of the drain is well in accordance with the design
An alternative explanation for the density depletions observed by Freja and Viking satellites
In this paper, we have studied the linear and nonlinear propagation of ion acoustic waves in the presence of electrons that follow the generalized (r,q) distribution. It has been shown that for positive values of r, which correspond to a flat-topped electron velocity distribution, the nonlinear ion acoustic waves admit rarefactive solitary structures or density depletions. It has been shown that the generalized (r,q) distribution function provides another way to explicate the density depletions observed by Freja and Viking satellites previously explained by proposing Cairns distribution function.In this paper, we have studied the linear and nonlinear propagation of ion acoustic waves in the presence of electrons that follow the generalized (r,q) distribution. It has been shown that for positive values of r, which correspond to a flat-topped electron velocity distribution, the nonlinear ion acoustic waves admit rarefactive solitary structures or density depletions. It has been shown that the generalized (r,q) distribution function provides another way to explicate the density depletions observed by Freja and Viking satellites previously explained by proposing Cairns distribution function
- …