3 research outputs found

    Soil Carbon Sequestration through Agronomic Management Practices

    Get PDF
    Improper soil and crop management practices have resulted in loss of soil carbon. Worldwide, about 1417 Pg of soil carbon is stored in first meter soil depth, while 456-Pg soil carbon is stored in above–below ground vegetation and dead organic matter. Healthy soils can be helpful in combating the climate change because soils having high organic matter can have higher CO2 sequestration potential. Main agronomic practices responsible for soil carbon loss include improper tillage operations, crop rotations, residue management, fertilization, and similarly no or less use of organic fertilizers that have resulted in the loss of soil organic matter in the form of CO2. The share of agriculture sector in the entire emissions of global GHGs in the form of CO2, N2O, and CH4 is about 25–30%. Studies have shown that by adapting proper tillage operations, the use of such kind of crop rotations that can improve soil organic matter and similarly the application of organic fertilizers, i.e., FYM, compost, and other organic amendments such as humic acid, vermicompost, etc., can be useful in soil carbon sequestration

    Salvia reflexa (Lamiaceae): a new record for Pakistan

    Get PDF
    Salvia reflexa Hornem., a member of the New World subgenus Calosphace, ranges from North America to southern South America, Australia, New Zealand, South Africa and Afghanistan in Asia, and still continues to expand its range. Here we report further range expansion for S. reflexa into the tribal areas of Pakistan and hypothesize that it has been introduced from Afghanistan. This represents a new record for the flora of Pakistan

    Rainwater harvesting scenarios and its prospective in Pakistan

    No full text
    Water is a precious commodity and water scarcity has become a serious issue in many parts of the world, especially in dense urban areas. Water resources are under increasing stress due to continuous population growth, agricultural development, urbanization, and industrialization. The gap between water demand and supply has also increased in recent years. This has resulted in increasing pressure on underground water resources as well as the depletion of groundwater aquifers at an alarming rate. Thus there is a growing need to explore viable methods and techniques to manage water availability, especially in urban areas. The objective of the current study was to determine the potential for rainwater harvesting (RWH) in the twin cities of Islamabad and Riwalpindi. We evaluated its suitability to supplement the water supply as well as contribute to groundwater recharge and flood control efforts. This could in turn help to overcome water demand, could potentially recharge depleting groundwater resources and could result in the development of a currently untapped additional water source for urban hubs
    corecore