3 research outputs found

    Chitosan nanoparticles: a versatile platform for biomedical applications

    Get PDF
    Chitosan is a biodegradable and biocompatible natural polymer that has been extensively explored in recent decades. The Food and Drug Administration has approved chitosan for wound treatment and nutritional use. Furthermore, chitosan has paved the way for advancements in different biomedical applications including as a nanocarrier and tissue-engineering scaffold. Its antibacterial, antioxidant, and haemostatic properties make it an excellent option for wound dressings. Because of its hydrophilic nature, chitosan is an ideal starting material for biocompatible and biodegradable hydrogels. To suit specific application demands, chitosan can be combined with fillers, such as hydroxyapatite, to modify the mechanical characteristics of pH-sensitive hydrogels. Furthermore, the cationic characteristics of chitosan have made it a popular choice for gene delivery and cancer therapy. Thus, the use of chitosan nanoparticles in developing novel drug delivery systems has received special attention. This review aims to provide an overview of chitosan-based nanoparticles, focusing on their versatile properties and different applications in biomedical sciences and engineering.info:eu-repo/semantics/publishedVersio

    Effect of quercetin on steroidogenesis and folliculogenesis in ovary of mice with experimentally-induced polycystic ovarian syndrome

    Get PDF
    IntroductionPolycystic Ovary syndrome (PCOS) affects the health of many women around the world. Apart from fundamental metabolic problems connected to PCOS, focus of our study is on the role of quercetin on genes relevant to steroidogenesis and folliculogenesis.MethodsEighteen mature parkes strain mice (4-5 weeks old) weighing 18–21 g were randomly divided into three groups of six each as follows: Group I serves as the control and was given water and a regular chow diet ad lib for 66 days; group II was given oral gavage administration of letrozole (LETZ) (6 mg/kg bw) for 21 days to induce PCOS and was left untreated for 45 days; For three weeks, Group III received oral gavage dose of LETZ (6 mg/kg), after which it received Quercetin (QUER) (125 mg/kg bw orally daily) for 45 days.ResultsIn our study we observed that mice with PCOS had irregular estrous cycle with increased LH/FSH ratio, decreased estrogen level and decline in expression of Kitl, Bmp1, Cyp11a1, Cyp19a1, Ar, lhr, Fshr and Esr1 in ovary. Moreover, we observed increase in the expression of CYP17a1, as well as increase in cholesterol, triglycerides, testosterone, vascular endothelial growth factor VEGF and insulin levels. All these changes were reversed after the administration of quercetin in PCOS mice.DiscussionQuercetin treatment reversed the molecular, functional and morphological abnormalities brought on due to letrozole in pathological and physiological setting, particularly the issues of reproduction connected to PCOS. Quercetin doesn’t act locally only but it acts systematically as it works on Pituitary (LH/FSH)- Ovary (gonad hormones) axis. the Side effects of Quercetin have to be targeted in future researches. Quercetin may act as a promising candidate for medical management of human PCOS

    A comprehensive analysis of notch signaling genes in breast cancer: Expression pattern and prognostic significance

    No full text
    The most recurrent type of cancer among women is breast cancer which is an intricate disease with high intertumoral and intratumoral heterogeneity. Such variability is a key factor in the failure of current treatments and the emergence of resistance. It is crucial to develop novel therapeutic options to enhance the prognosis for breast cancer patients due to the limitations of current therapy and the unavoidable formation of acquired drug resistance (chemo and endocrine) as well as radio resistance. Poor clinical results in the treatment of breast cancer, that is resistance are associated with deregulated Notch signalling within the breast tumor and its tumor microenvironment (TME). In this research, a bioinformatics approach was used to check the expression pattern, the role, as well as the prognostic and diagnostic significance of the deregulated Notch-related genes in BC patients. The various bioinformatic tools include; UCSC XENA, GEPIA 2, UALCAN, bc Genexminer, KM Plotter, ENRICHR, STRING and Cytoscape. The study demonstrates that highly dysregulated genes (NOTCH4, CCND1, JAG1, DLL1, MAML2, and EGFR) can be used as biomarkers to identify breast cancer patients with poor prognosis and as potential targets for therapeutic intervention. The study found that 6 genes—NOTCH4, CCND1, JAG1, DLL1, MAML2, and EGFR—out of 22 tested genes showed a significant log2 fold change. Our study revealed that Luminal Breast Cancer patients display a high expression of the CCND1 gene in comparison to its expression in normal. The results of our study also depicted that the patients with elevated levels of NOTCH-related gene expression displayed better relapse-free survival with p < 0.05. Moreover, we analysed the deregulated notch genes that play an important role in various cellular and molecular processes. The study shows that these highly deregulated screened genes could be utilized as the Biomarkers that help to reveal poor prognosis and could act as targets for treating BC. However, the identification of these dysregulated genes involved in notch signallibng through insilico approach is not sufficient
    corecore