3 research outputs found

    Cadmium phytotoxicity: issues, progress, environmental concerns and future perspectives

    Get PDF
    Cadmium, a high toxicity element, is a potential threat to plant and human health, and a dangerous pollutant in the environment. Uptake and accumulation by crops represent the main entry pathway for potentially health-threatening toxic metals into human and animal food. Crops and other plants take up Cd from the soil or water and may distribute it in their roots and shoots. Soil and/or water are usually contaminated with Cd through natural sources, industrial effluent, and anthropogenic activities. In this review, the sources of Cd contamination, evaluation of the phytotoxic effects on plants, and mode of action of Cd toxicity, were summarized. Plant defensive strategies upon excess Cd are also considered in this review. Cd-induced effects include oxidative stress, disintegration of the photosynthetic apparatus, reduction in gas exchange parameters, nutrient imbalance, and subcellular organelle degradation. In addition, Cd severely impairs biomolecules such as DNA, protein, and lipids. Although plants are sessile in nature, they are equipped with certain mechanisms to cope with unfavorable conditions. These mechanisms include synthesis of metal-helating proteins, expression of enzymatic and non-enzymatic antioxidants, organic acids, and plant root–mycorrhiza association. The built-in system of plant tolerance to Cd can be further enhanced by the application of exogenous organic and inorganic metal sources. This review will broaden the knowledge about the Cd accumulation in plants and the responses to metal exposure, as well as our understanding of metal tolerance and overcoming this serious issue for sustainable agriculture and human health worldwide. Highlights Cd accumulation has harmful effects in an organism. Cd has been listed 7th out of 275 compounds in the priority list of hazardous materials. Cd remains in the soil for 15–1100 years. Plants usually imply certain strategies to overcome Cd toxicity. Plants built-in systems can be enhanced to overwhelmed this problem.Cadmium, a high toxicity element, is a potential threat to plant and human health, and a dangerous pollutant in the environment. Uptake and accumulation by crops represent the main entry pathway for potentially health-threatening toxic metals into human and animal food. Crops and other plants take up Cd from the soil or water and may distribute it in their roots and shoots. Soil and/or water are usually contaminated with Cd through natural sources, industrial effluent, and anthropogenic activities. In this review, the sources of Cd contamination, evaluation of the phytotoxic effects on plants, and mode of action of Cd toxicity, were summarized. Plant defensive strategies upon excess Cd are also considered in this review. Cd-induced effects include oxidative stress, disintegration of the photosynthetic apparatus, reduction in gas exchange parameters, nutrient imbalance, and subcellular organelle degradation. In addition, Cd severely impairs biomolecules such as DNA, protein, and lipids. Although plants are sessile in nature, they are equipped with certain mechanisms to cope with unfavorable conditions. These mechanisms include synthesis of metal-helating proteins, expression of enzymatic and non-enzymatic antioxidants, organic acids, and plant root–mycorrhiza association. The built-in system of plant tolerance to Cd can be further enhanced by the application of exogenous organic and inorganic metal sources. This review will broaden the knowledge about the Cd accumulation in plants and the responses to metal exposure, as well as our understanding of metal tolerance and overcoming this serious issue for sustainable agriculture and human health worldwide. Highlights Cd accumulation has harmful effects in an organism. Cd has been listed 7th out of 275 compounds in the priority list of hazardous materials. Cd remains in the soil for 15–1100 years. Plants usually imply certain strategies to overcome Cd toxicity. Plants built-in systems can be enhanced to overwhelmed this problem

    Anthocyanin Accumulation in Black Kernel Mutant Rice and its Contribution to ROS Detoxification in Response to High Temperature at the Filling Stage

    No full text
    Effect of high temperature (HT) on anthocyanin (ANS) accumulation and its relationship with reactive oxygen species (ROS) generation in color rice kernel was investigated by using a black kernel mutant (9311bk) and its wildtype (WT). 9311bk showed strikingly higher ANS content in the kernel than WT. Just like the starch accumulation in rice kernels, ANS accumulation in the 9311bk kernel increased progressively along with kernel development, with the highest level of ANS at kernel maturity. HT exposure evidently decreased ANS accumulation in 9311bk kernel, but it increased ROS and MDA concentrations. The extent of HT-induced decline in kernel starch accumulation was genotype-dependent, which was much larger for WT than 9311bk. Under HT exposure, 9311bk had a relatively lower increase in ROS and MDA contents than its WT. This occurrence was just opposite to the genotype-dependent alteration in the activities of antioxidant enzymes (SOD, CAT and APX) in response to HT exposure, suggesting more efficiently ROS detoxification and relatively stronger heat tolerance for 9311bk than its WT. Hence, the extent of HT-induced declines in grain weight and kernel starch content was much smaller for 9311bk relative to its WT. HT exposure suppressed the transcripts of OsCHS, OsF3’H, OsDFR and OsANS and impaired the ANS biosynthesis in rice kernel, which was strongly responsible for HT-induced decline in the accumulation of ANS, C3G, and P3G in 9311bk kernels. These results could provide valuable information to cope with global warming and achieving high quality for color rice production

    Diagenetic Evolution of Upper Cretaceous Kawagarh Carbonates from Attock Hazara Fold and Thrust Belt, Pakistan

    No full text
    A recent hydrocarbons discovery in 2021 in the Kawagarh Formation has brought attention to the significance of sedimentology and specifically diagenesis for understanding and characterizing the reservoir properties. The diagenetic history and multiscale processes that contributed to diagenesis were vaguely known. This study aimed to reconstruct various diagenetic phases, paragenetic sequences, and the interrelationship of these phases in the Kawagarh Formation. The diagenetic processes were identified and characterized through an integrated methodology utilizing the outcrop, petrographic, and geochemical analyses. Early calcite cementation was found to occur in the early stages of marine burial diagenesis involving pore fluid originating from the dissolution of aragonite in interlayer marl/mudstone beds and reprecipitating as microspar in adjacent limestone beds. The absence of mechanical compaction in wackstone and mudstone facies and the presence of late compaction in lithified packstones clearly imply that early calcite cementation occurred prior to compaction. Dolomitization with stylolites coupled with significant negative oxygen (δ18O) isotope values implies a fault-related hydrothermal dolomitization model. Uplift introduced the fractures and low Mg fresh fluids to the system which caused calcitisation in shallow burial settings. The depleted δ13C and negative δ18O values indicate the mixing of surface-derived waters with hot burial fluids during the calcitization. This study offers valuable insights into several aspects related to the formation and the basin itself, including burial depths, fluid influx, and geochemical gradients. It also sheds light on the evolution of reservoir properties such as porosity and permeability in dolomitization fronts. Such insights can be used to gain a deeper understanding about the burial history, basin evaluation, and reservoir characterization for hydrocarbon exploration
    corecore