8 research outputs found

    Splitwise: Efficient generative LLM inference using phase splitting

    Full text link
    Recent innovations in generative large language models (LLMs) have made their applications and use-cases ubiquitous. This has led to large-scale deployments of these models, using complex, expensive, and power-hungry AI accelerators, most commonly GPUs. These developments make LLM inference efficiency an important challenge. Based on our extensive characterization, we find that there are two main phases during an LLM inference request: a compute-intensive prompt computation, and a memory-intensive token generation, each with distinct latency, throughput, memory, and power characteristics. Despite state-of-the-art batching and scheduling, the token generation phase underutilizes compute resources. Specifically, unlike compute-intensive prompt computation phases, token generation phases do not require the compute capability of the latest GPUs, and can be run with lower power and cost. With Splitwise, we propose splitting the two phases of a LLM inference request on to separate machines. This allows us to use hardware that is well-suited for each phase, and provision resources independently per phase. However, splitting an inference request across machines requires state transfer from the machine running prompt computation over to the machine generating tokens. We implement and optimize this state transfer using the fast back-plane interconnects available in today's GPU clusters. We use the Splitwise technique to design LLM inference clusters using the same or different types of machines for the prompt computation and token generation phases. Our clusters are optimized for three key objectives: throughput, cost, and power. In particular, we show that we can achieve 1.4x higher throughput at 20% lower cost than current designs. Alternatively, we can achieve 2.35x more throughput with the same cost and power budgets.Comment: 12 pages, 19 figure

    TACCL: Guiding Collective Algorithm Synthesis using Communication Sketches

    Full text link
    Machine learning models are increasingly being trained across multiple GPUs and multiple machines. In this setting, data is transferred between GPUs using communication collectives such as AlltoAll and AllReduce, which can become a significant bottleneck in large models. It is important to use efficient algorithms for collective communication. We introduce TACCL, a tool that allows algorithm designers to guide a synthesizer into automatically generating algorithms for a given hardware configuration and communication collective. TACCL uses the novel communication sketch abstraction to obtain crucial information from the designer that is used to significantly reduce the state space and guide the synthesizer towards better algorithms. TACCL also uses a novel encoding of the problem that allows it to scale beyond single-node topologies. We use TACCL to synthesize algorithms for three collectives and two hardware topologies: DGX-2 and NDv2. We demonstrate that the algorithms synthesized by TACCL outperform the NVIDIA Collective Communication Library (NCCL) by up to 6.7Ă—\times. We also show that TACCL can speed up end-to-end training of Transformer-XL and BERT models by 11%--2.3Ă—\times for different batch sizes.Comment: Accepted at NSDI'23. Contains 17 pages, 11 figures, including Appendi

    Genomic Survey of E. coli From the Bladders of Women With and Without Lower Urinary Tract Symptoms

    Get PDF
    Urinary tract infections (UTIs) are one of the most common human bacterial infections. While UTIs are commonly associated with colonization by Escherichia coli, members of this species also have been found within the bladder of individuals with no lower urinary tract symptoms (no LUTS), also known as asymptomatic bacteriuria. Prior studies have found that both uropathogenic E. coli (UPEC) strains and E. coli isolates that are not associated with UTIs encode for virulence factors. Thus, the reason(s) why E. coli sometimes causes UTI-like symptoms remain(s) elusive. In this study, the genomes of 66 E. coli isolates from adult female bladders were sequenced. These isolates were collected from four cohorts, including women: (1) without lower urinary tract symptoms, (2) overactive bladder symptoms, (3) urgency urinary incontinence, and (4) a clinical diagnosis of UTI. Comparative genomic analyses were conducted, including core and accessory genome analyses, virulence and motility gene analyses, and antibiotic resistance prediction and testing. We found that the genomic content of these 66 E. coli isolates does not correspond with the participant’s symptom status. We thus looked beyond the E. coli genomes to the composition of the entire urobiome and found that the presence of E. coli alone was not sufficient to distinguish between the urobiomes of individuals with UTI and those with no LUTS. Because E. coli presence, abundance, and genomic content appear to be weak predictors of UTI status, we hypothesize that UTI symptoms associated with detection of E. coli are more likely the result of urobiome composition
    corecore