4 research outputs found

    Sticky Ends in a Self-Assembling ABA Triblock Copolymer: The Role of Ureas in Stimuli-Responsive Hydrogels

    No full text
    Directing polymer self-assembly through noncovalent interactions is a powerful way to control the structure and function of nanoengineered materials. Dynamic hydrogen bonds are particularly useful for materials with structures that change over time or in response to specific stimuli. In the present work, we use the supramolecular association of urea moieties to manipulate the morphology, thermal response, and mechanical properties of soft polymeric hydrogels. Urea-terminated poly(isopropyl glycidyl ether)-b-poly(ethylene oxide)-b-poly(isopropyl glycidyl ether) ABA triblock copolymers were synthesized using controlled, anionic ring-opening polymerization and subsequent chain-end functionalization. Triblock copolymers with hydroxy end-groups were incapable of hydrogelation, while polymers terminated with meta-bis-urea motifs formed robust gels at room temperature. Rheometric analysis of the bulk gels, variable-temperature infrared spectroscopy (VT-IR), differential scanning calorimetry (DSC), and small-angle X-ray scattering (SAXS) confirmed the formation of structured hydrogels via association of the meta-bis-urea end-groups. Monourea end-groups did not result in the same regular structure as the meta-bis-urea. In future, the reported hydrogels could be useful for elastomeric, shape-morphing 3D-printed constructs, or as biomimetic scaffolds with precisely tailored porosity and mechanical properties

    Additive Manufacturing of Bovine Serum Albumin-Based Hydrogels and Bioplastics

    No full text
    Bio-sourced and biodegradable polymers for additive manufacturing could enable the rapid fabrication of parts for a broad spectrum of applications ranging from healthcare to aerospace. However, a limited number of these materials are suitable for vat photopolymerization processes. Herein, we report a two-step additive manufacturing process to fabricate robust protein-based constructs using a commercially available laser-based SLA printer. Methacrylated bovine serum albumin (MA-BSA) was synthesized and formulated into aqueous resins that were used to print complex 3D objects with a resolution comparable to a commercially available resin. The MA-BSA resins were characterized by rheometry to determine the viscosity and the cure rate, as both of these parameters can ultimately be used to predict the printability of the resin. In the first step of patterning these materials, the MA-BSA resin was 3D printed, and in the second step, the printed construct was thermally cured to denature the globular protein and increase the intermolecular noncovalent interactions. Thus, the final 3D printed part was comprised of both chemical and physical cross-links. Compression studies of hydrated and dehydrated constructs demonstrated a broad range of compressive strengths and Young’s moduli that could be further modulated by adjusting the type and amount of co-monomer. The printed hydrogel constructs demonstrated good cell viability (> 95%) after a 21-day culture period. These MA-BSA resins are expected to be compatible with other vat photopolymerization techniques including digital light projection (DLP) and continuous liquid interface production (CLIP)

    Catalytically Initiated Gel-in-Gel Printing of Composite Hydrogels

    No full text
    Herein, we describe a method to 3D print robust hydrogels and hydrogel composites via gel-in-gel 3D printing with catalytically activated polymerization to induce cross-linking. A polymerizable shear-thinning hydrogel ink with tetramethylethylenediamine as catalyst was directly extruded into a shear-thinning hydrogel support bath with ammonium persulfate as initiator in a pattern-wise manner. When the two gels came into contact, the free radicals generated by the catalyst initiated the free-radical polymerization of the hydrogel ink. Unlike photocuring, a catalyst-initiated polymerization is suitable for printing hydrogel composites of varying opacity, since it does not depend upon light penetration through the sample. The hydrogel support bath also exhibited a temperature-responsive behavior in which the gel “melted” upon cooling below 16 °C. Therefore, the printed object was easily removed by cooling the gel to a liquid state. Hydrogel composites with graphene oxide and multiwalled carbon nanotubes (MWCNTs) were successfully printed. The printed composites with MWCNTs afforded photothermally active objects, which have utility as stimuli-responsive actuators

    Additive Manufacturing of Catalytically Active Living Materials

    No full text
    Living materials, which are composites of living cells residing in a polymeric matrix, are designed to utilize the innate functionalities of the cells to address a broad range of applications such as fermentation and biosensing. Herein, we demonstrate the additive manufacturing of catalytically active living materials (AMCALM) for continuous fermentation. A multi-stimuli-responsive yeast-laden hydrogel ink, based on F127-dimethacrylate, was developed and printed using a direct-write 3D printer. The reversible stimuli-responsive behaviors of the polymer hydrogel inks to temperature and pressure are critical, as they enabled the facile incorporation of yeast cells and subsequent fabrication of 3D lattice constructs. Subsequent photo-cross-linking of the printed polymer hydrogel afforded a robust elastic material. These yeast-laden living materials were metabolically active in the fermentation of glucose into ethanol for 2 weeks in a continuous batch process without significant reduction in efficiency (∌90% yield of ethanol). This cell immobilization platform may potentially be applicable toward other genetically modified yeast strains to produce other high-value chemicals in a continuous biofermentation process
    corecore