18 research outputs found
Antihyperuricemic activity of gum of Calophyllum inophyllum ultra high dilutions in potassium oxonate induced wister albino rats
356-359 Hyperuricemia is a biochemical abnormality and it affects the quality of life. Many medicinal substances are used in lowering the uric acid. The study designed to find hypouricemic effects ofultrahigh dilutions, the gum of Calophyllum inophyllum, Acid benzoicum in oxonate of potassium induced hyperuricemic wistar albinomodel.
The experiment consist of 11 groups of albino rats. All the groups were treated with oxonate of potassium except normal control. Healthy group of animals received only distilled water, hyperuricemic control group were given alcohol mixed in distilled water. A standard allopathic medical substance Allopurinol and Acid benzoicum ultra high dilutions were given in time dependent manner (single dose/day) in different experimental groups. Blood samples were collected by rat tail vein bleeding. The uric acid and creatinine levels of serum were analyzed by using standard measuring kits. The Student's t-test was used for statistical analysis of difference between the groups p ≤ 0.05 was reflected significant.
Oral intake of Acid benzoicum ultrahigh dilutions reduceduric acid levels of hyperuricemic wistar albino rats in time dependent mode. At 3rd day and 7th day administration of Acid benzoicum ultrahigh dilutions decreased the level of uric acid more ominously as compared to one day administration. However, allopurinol a standard allopathic drug normalized the uric acid level in all experimental groups.
The current work showed significant hypouricemic effects of Acid benzoicum ultrahigh dilutions in hyperuricemic wistar albino model. However, clear conclusion of hypouricemic activity of Acid benzoicum needed repetition of experimental work
Seed Bio-priming of wheat with a novel bacterial strain to modulate drought stress in Daegu, South Korea
Wheat is one of the major cereal crop grown food worldwide and, therefore, plays has a key role in alleviating the global hunger crisis. The effects of drought stress can reduces crop yields by up to 50% globally. The use of drought-tolerant bacteria for biopriming can improve crop yields by countering the negative effects of drought stress on crop plants. Seed biopriming can reinforce the cellular defense responses to stresses via the stress memory mechanism, that its activates the antioxidant system and induces phytohormone production. In the present study, bacterial strains were isolated from rhizospheric soil taken from around the Artemisia plant at Pohang Beach, located near Daegu, in the South Korea Republic of Korea. Seventy-three isolates were screened for their growth-promoting attributes and biochemical characteristics. Among them, the bacterial strain SH-8 was selected preferred based on its plant growth-promoting bacterial traits, which are as follows: abscisic acid (ABA) concentration = 1.08 ± 0.05 ng/mL, phosphate-solubilizing index = 4.14 ± 0.30, and sucrose production = 0.61 ± 0.13 mg/mL. The novel strain SH-8 demonstrated high tolerance oxidative stress. The antioxidant analysis also showed that SH-8 contained significantly higher levels of catalase (CAT), superoxide dismutase (SOD), and ascorbic peroxidase (APX). The present study also quantified and determined the effects of biopriming wheat (Triticum aestivum) seeds with the novel strain SH-8. SH-8 was highly effective in enhancing the drought tolerance of bioprimed seeds; their drought tolerance and germination potential (GP) were increased by up to 20% and 60%, respectively, compared with those in the control group. The lowest level of impact caused by drought stress and the highest germination potential, seed vigor index (SVI), and germination energy (GE) (90%, 2160, and 80%, respectively), were recorded for seeds bioprimed with with SH-8. These results show that SH-8 enhances drought stress tolerance by up to 20%. Our study suggests that the novel rhizospheric bacterium SH-8 (gene accession number OM535901) is a valuable biostimulant that improves drought stress tolerance in wheat plants and has the potential to be used as a biofertilizer under drought conditions
Combined application of melatonin and Bacillus sp. strain IPR-4 ameliorates drought stress tolerance via hormonal, antioxidant, and physiomolecular signaling in soybean
The role of melatonin and plant growth-promoting rhizobacteria (PGPR) in enhancing abiotic stress tolerance has been widely investigated. However, the mechanism underlying the interaction between melatonin and PGPR in drought stress tolerance is poorly understood. In this study, we investigated the role of Bacillus sp. strain IPR-4 co-inoculated with melatonin (IPR-4/MET) to ameliorate drought stress response in soybean. Initially, 16 random isolates were selected from a previously pooled collection of isolates from soil at plant physiology lab, and were screesn for plant growth promoting (PGP) traits and their survival rate polyethylene glycol (PEG6000) (5%, 10%, and 15%). Among these isolate Bacillus sp. strain IPR-4 were selected on base of its significant PGP traits such as the survival rate gradient concentrations of PEG6000 (5%, 10%, and 15%) compared to other isolates, and produced high levels of indole-3-acetic acid and organic acids, coupled with exopolysaccharide, siderophores, and phosphate solubilization under drought stress. The Bacillus sp. strain IPR-4 were then validated using 16S rRNA sequencing. To further investigate the growth-promoting ability of the Bacillus sp. IPR-4 and its potential interaction with MET, the bacterial inoculum (40 mL of 4.5 × 10−8 cells/mL) was applied alone or in combination with MET to soybean plants for 5 days. Then, pre-inoculated soybean plants were subjected to drought stress conditions for 9 days by withholding water under greenhouse conditions. Furthermore, when IPR-4/MET was applied to plants subjected to drought stress, a significant increase in plant height (33.3%) and biomass (fresh weight) was observed. Similarly, total chlorophyll content increased by 37.1%, whereas the activity of peroxidase, catalase, ascorbate peroxidase, superoxide dismutase, and glutathione reductase increased by 38.4%, 34.14%, 76.8%, 69.8%, and 31.6%, respectively. Moreover, the hydrogen peroxide content and malondialdehyde decreased by 37.3% and 30% in drought-stressed plants treated with IPR-4 and melatonin. Regarding the 2,2-diphenyl-1-picrylhydrazyl activity and total phenolic content, shows 38% and 49.6% increase, respectively. Likewise, Bacillus–melatonin-treated plants enhanced the uptake of magnesium, calcium, and potassium by 31.2%, 50.7%, and 30.5%, respectively. Under the same conditions, the salicylic acid content increased by 29.1%, whereas a decreasing abscisic acid content (25.5%) was observed. The expression levels of GmNCED3, GmDREB2, and GmbZIP1 were recorded as the lowest. However, Bacillus–melatonin-treated plants recorded the highest expression levels (upregulated) of GmCYP707A1 and GmCYP707A2, GmPAL2.1, and GmERD1 in response to drought stress. In a nutshell, these data confirm that Bacillus sp. IPR-4 and melatonin co-inoculation has the highest plant growth-promoting efficiency under both normal and drought stress conditions. Bacillus sp. IPR-4/melatonin is therefore proposed as an effective plant growth regulator that optimizes nutrient uptake, modulates redox homeostasis, and enhances drought tolerance in soybean plants
Current Knowledge of Medicinal Mushrooms Related to Anti-Oxidant Properties
Background: A renewed focus on medicinal mushrooms has brought forth a sustainable health dimension. Conventional health strategies are insufficiently integrated with sustainable health promotion. The health-promoting outcome of mushrooms has fascinated many groups during the past few years because of various primary and secondary metabolites in different cellular components. They contain many bioactive metabolites, including proteins (cytokines, ergothioneine), fibers, moisture, carbohydrates (uronic acid), folate, thiamine, ascorbic acid, vitamin D, calcium, potassium, polysaccharides (G. lucidum polysaccharides, alpha and beta glucans, and lentinan) polyketides, polyphenols (Protocatechuic acid, inonoblins A–vanillic acid, phelligridins D, E, and G, hydroxybenzoic acid, gallic acid, tannic acid, hispidine, gentisic acid, and tocopherol), nucleotides (adenosine, cordycepin), lovastatin, steroids, alkaloids, and sesquiterpenes. Objective: This study was conducted to gather information on the current knowledge of medicinal mushrooms, with respect to their antioxidant properties. Conclusions: The results indicated that mushrooms are a promising source of natural antioxidants. Of all mushrooms, the Ganoderma tsugae Murill exhibited an excellent antioxidant potential of 93.7–100% at 20 mg/mL
Anti-hyperuricemic potential of <em>Rhododendron tomentosum</em> Harmaja syn. <em>Ledum palustre</em> L. 30c and 1M in potassium oxonate induced rat model
724-731Hyperuricemia is a common metabolic disorder and several homeopathic ultra-high dilutions are being used in the treatment of hyperuricemia and its related diseases. Conventional treatment for the hyperuricemia is allopurinol but it gives many side effects like allergic reactions, gestrohepatic ailment, hepatic and renal complaints. It is the need of the hour to introduce an alternative system of medicine with minimal side effects. The study aimed to find hypouricemic effects of Ledum palustre 30c and 1M in potassium oxonate induced hyperuricemia rat model. The study comprised of 11 groups of rats (E = 33). All the groups except normal control were treated with potassium oxonate. Normal control group received distilled water, hyperurecemic control group succussed alcohol mixed in distilled water. Allopurinol, Ledum palustre 30c and 1M were administered for one day, 3 day and 7 days (single dose/day) in different study groups (3×3 = 9 groups). Blood samples were collected by rat tail vein bleeding. Serum uric acid and serum creatinine levels were checked by using standard kits. Student's t-test for independent means was used for statistical analysis of difference between the groups. p ≤ 0.05 (two tailed value) was considered significant. Oral administration of Ledum palustre 30c and 1M decreased serum uric acid levels of hyperurecemic rats in time dependent manner. 3 day and 7 day administration of Ledum palustre 30c and 1M reduced serum uric acid level more significantly as compared to one day administration. However, allopurinol normalized serum uric acid levels in all study groups. The present study indicated marked hypouricemic effects of Ledum palustre 30c and 1M in hyperuricemia induced by potassium oxonate in rats. However, clear conclusion of hypouricemic potential of Ledum palustre required replication of experiment
FeONPs alleviate cadmium toxicity in Solanum melongena through improved morpho-anatomical and physiological attributes, along with oxidative stress and antioxidant defense regulations
Abstract In this study, various constraints of Cd toxicity on growth, morpho-anatomical characters along with physiological and biochemical metabolic processes of Solanum melongena L. plants were analyzed. Conversely, ameliorative role of iron oxide nanoparticles (FeONPs) was examined against Cd stress. For this purpose, the following treatments were applied in completely randomized fashion; 3 mM CdCl2 solution applied with irrigation water, 40 and 80 ppm solutions of FeONPs applied via foliar spray. Regarding the results, Cd caused oxidative damage to plants’ photosynthetic machinery, resulting in elevated levels of stress-markers like malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolytic leakage (EL) along with slight increase in antioxidants activities, including glutathione (GsH), ascorbate (AsA), catalases (CAT), peroxidases (POD), superoxide dismutase (SOD), and ascorbate peroxidases (APX). Also, high Cd level in plants disturb ions homeostasis and reduced essential minerals uptake, including Ca and K. This ultimately reduced growth and development of S. melongena plants. In contrast, FeONPs supplementations improved antioxidants (enzymatic and non-enzymatic) defenses which in turn limited ROS generation and lowered the oxidative damage to photosynthetic machinery. Furthermore, it maintained ionic balance resulting in enhanced uptake of Ca and K nutrients which are necessary for photosynthesis, hence also improved photosynthesis rate of S. melongena plants. Overall, FeONPs foliar spray effectively mitigated Cd toxicity imposed on S. melongena plants
Growth and Photosynthetic Characteristics of Sesame Seedlings with Gibberellin-Producing <i>Rhodobacter sphaeroides</i> SIR03 and Biochar
The use of plant growth-promoting rhizobacteria (PGPR) with biochar is apprised to be a promising bio-fertilizer for improving the soil fertility and plant growth and development. The current study aimed to identify a potential plant growth-promoting rhizobacterium alongside biochar to improve sesame seedling productivity. Our results revealed that among the nine isolates, SIR01, SIR03, and SIR07 significantly improved the growth and biomass of sesame and Waito-C rice seedlings. The increase in growth of Waito-C rice seedlings through isolate SIR01, SIR03, and SIR07, suggests their ability to produce phytohormones such as GA4, GA9, GA24, and GA34. Furthermore, the application of isolate SIR03 and biochar together revealed a synergistic increase in sesame seedling growth and biomass (fresh and dry weight) compared with their individual applications. This may be explained by enhancement of photosynthetic rate, chlorophyll fluorescence, stomatal conductance, and transpiration rate by the combined SIR03 and biochar treatment. This suggests that co-inoculation with SIR03 alongside the application of biochar can be considered an eco-friendly, low-cost bio-fertilizer to potentially improve sesame seedling growth and development
Growth and Photosynthetic Characteristics of Sesame Seedlings with Gibberellin-Producing Rhodobacter sphaeroides SIR03 and Biochar
The use of plant growth-promoting rhizobacteria (PGPR) with biochar is apprised to be a promising bio-fertilizer for improving the soil fertility and plant growth and development. The current study aimed to identify a potential plant growth-promoting rhizobacterium alongside biochar to improve sesame seedling productivity. Our results revealed that among the nine isolates, SIR01, SIR03, and SIR07 significantly improved the growth and biomass of sesame and Waito-C rice seedlings. The increase in growth of Waito-C rice seedlings through isolate SIR01, SIR03, and SIR07, suggests their ability to produce phytohormones such as GA4, GA9, GA24, and GA34. Furthermore, the application of isolate SIR03 and biochar together revealed a synergistic increase in sesame seedling growth and biomass (fresh and dry weight) compared with their individual applications. This may be explained by enhancement of photosynthetic rate, chlorophyll fluorescence, stomatal conductance, and transpiration rate by the combined SIR03 and biochar treatment. This suggests that co-inoculation with SIR03 alongside the application of biochar can be considered an eco-friendly, low-cost bio-fertilizer to potentially improve sesame seedling growth and development
Foliar application of salicylic acid improved morpho-anatomical features of potato by irrigating with wastewater
Abstract Background This study aimed to evaluate the suitability of using drain water as a source of irrigation and its effects along with salicylic acid on morphological, anatomical, physico-chemical as well as yield attributes of potato. For this study, potato tubers were grown in pots and irrigated with different concentrations of drain water. Salicylic acid treatments vis. 0, 0.5 and 1.0 mM were applied foliarly. Pre- and post-harvest analysis was carried out to determine different attributes of soil, water and plants after 60 days. Results The growth of potato plant was increased as the concentration of SA increased through increasing shoot length, fresh/dry weight and tuber number/plant. In this research work, plant respond to overcome metal stresses by up regulating antioxidant defense system such as, peroxidase, catalase and superoxide dismutase) by application of highest treatment of SA when irrigated with 6% drain water. Plants accumulated the highest concentrations of Cd, Cr, and Pb in the leaves when treated with 1 mM of SA, compared to other plant parts. It was observed that photosynthetic pigment enhanced in 6% drain water treated plants when applied with 1mM SA as compared to control. An increase in epidermis and cortical cell thickness, as well as stomatal closure, was observed, helping to maintain water loss under stress conditions. Conclusions According to these results, it can be suggested that SA is potent signaling molecule can play an essential role in maintaining potato growth when irrigated with drain water containing heavy metals through stimulating metal up take and up regulation of antioxidant enzymes
Comparative mineral and biochemical characterization of Citrus reticulata fruits and leaves to citrus canker pathogens, Xanthomonas axonopodis
Abstract Pakistan’s economy greatly benefits from citrus production since these fruits are sold and consumed all over the world. Although citrus fruits are easy to cultivate, they are susceptible to diseases caused by bacteria, viruses, and fungi. These challenges, as well as difficulties in obtaining the proper nutrients, might negatively impact fruit yields and quality. Citrus canker is another complicated problem caused by the germ Xanthomonas axonopodis. This germ affects many types of citrus fruits all over the world. This study looked closely at how citrus canker affects the leaves and the quality of the fruit in places like Sargodha, Bhalwal, Kotmomin, and Silanwali, which are big areas for growing citrus in the Sargodha district. What we found was that plants without the disease had more chlorophyll in their leaves compared to the sick plants. Also, the healthy plants had better amounts of important minerals like calcium, magnesium, potassium, and phosphorus in their fruits. But the fruits with the disease had too much sodium, and the iron levels were a bit different. The fruits with the disease also didn’t have as much of something that protects them called antioxidants, which made them more likely to get sick. This study helps us understand how citrus canker affects plants and fruit, so we can think of ways to deal with it