118 research outputs found

    Ab initio Molecular Dynamical Investigation of the Finite Temperature Behavior of the Tetrahedral Au19_{19} and Au20_{20} Clusters

    Get PDF
    Density functional molecular dynamics simulations have been carried out to understand the finite temperature behavior of Au19_{19} and Au20_{20} clusters. Au20_{20} has been reported to be a unique molecule having tetrahedral geometry, a large HOMO-LUMO energy gap and an atomic packing similar to that of the bulk gold (J. Li et al., Science, {\bf 299} 864, 2003). Our results show that the geometry of Au19_{19} is exactly identical to that of Au20_{20} with one missing corner atom (called as vacancy). Surprisingly, our calculated heat capacities for this nearly identical pair of gold cluster exhibit dramatic differences. Au20_{20} undergoes a clear and distinct solid like to liquid like transition with a sharp peak in the heat capacity curve around 770 K. On the other hand, Au19_{19} has a broad and flat heat capacity curve with continuous melting transition. This continuous melting transition turns out to be a consequence of a process involving series of atomic rearrangements along the surface to fill in the missing corner atom. This results in a restricted diffusive motion of atoms along the surface of Au19_{19} between 650 K to 900 K during which the shape of the ground state geometry is retained. In contrast, the tetrahedral structure of Au20_{20} is destroyed around 800 K, and the cluster is clearly in a liquid like state above 1000 K. Thus, this work clearly demonstrates that (i) the gold clusters exhibit size sensitive variations in the heat capacity curves and (ii) the broad and continuous melting transition in a cluster, a feature which has so far been attributed to the disorder or absence of symmetry in the system, can also be a consequence of a defect (absence of a cap atom) in the structure.Comment: 7 figure

    Density functional investigation of the interaction of acetone with small gold clusters

    Get PDF
    The structural evolution of Aun (n = 2, 3, 5, 7, 9, and 13) clusters and the adsorption of organic molecules such as acetone, acetaldehyde, and diethyl ketone on these clusters are studied using a density functional method. The detailed study of the adsorption of acetone on the Aun clusters reveals two main points. (1) The acetone molecule interacts with one gold atom of the gold clusters via the carbonyl oxygen. (2) This interaction is mediated through back donation mainly from the spd-hybridized orbitals of the interacting gold atom to the oxygen atom of the acetone molecule. In addition, a hydrogen bond is observed between a hydrogen atom of the methyl group and another gold atom (not involved in the bonding with carbonyl oxygen). Interestingly, the authors notice that the geometries of Au9 and Au13 undergo a significant flattening due to the adsorption of an acetone molecule. They have also investigated the role of the alkyl chain attached to the carbonyl group in the adsorption process by analyzing the interaction of Au13 with acetaldehyde and diethyl ketone

    Thermodynamic properties of Pt nanoparticles: Size, shape, support, and adsorbate effects

    Get PDF
    This study presents a systematic investigation of the thermodynamic properties of free and γ-Al2O3-supported size-controlled Pt nanoparticles (NPs) and their evolution with decreasing NP size. A combination of in situ extended x-ray absorption fine-structure spectroscopy (EXAFS), ex situ transmission electron microscopy (TEM) measurements, and NP shape modeling revealed (i) a cross over from positive to negative thermal expansion with decreasing particle size, (ii) size- and shape-dependent changes in the mean square bond-projected bond-length fluctuations, and (iii) enhanced Debye temperatures (ΘD, relative to bulk Pt) with a bimodal size-dependence for NPs in the size range of ∼0.8–5.4 nm. For large NP sizes (diameter d >1.5 nm) ΘD was found to decrease toward ΘD of bulk Pt with increasing NP size. For NPs ≤ 1 nm, a monotonic decrease of ΘD was observed with decreasing NP size and increasing number of low-coordinated surface atoms. Our density functional theory calculations confirm the size- and shape-dependence of the vibrational properties of our smallest NPs and show how their behavior may be tuned by H desorption from the NPs. The experimental results can be partly attributed to thermally induced changes in the coverage of the adsorbate (H2) used during the EXAFS measurements, bearing in mind that the interaction of the Pt NPs with the stiff, high-melting temperature γ-Al2O3 support may also play a role. The calculations also provide good qualitative agreement with the trends in the mean square bond-projected bond-length fluctuations measured via EXAFS. Furthermore, they revealed that part of the ΘD enhancement observed experimentally for the smallest NPs (d ≤ 1 nm) might be assigned to the specific sensitivity of EXAFS, which is intrinsically limited to bond-projected bond-length fluctuations

    Thermodynamic properties of Pt nanoparticles: Size, shape, support, and adsorbate effects

    Get PDF
    This study presents a systematic investigation of the thermodynamic properties of free and gamma-Al2O3-supported size-controlled Pt nanoparticles (NPs) and their evolution with decreasing NP size. A combination of in situ extended x-ray absorption fine-structure spectroscopy (EXAFS), ex situ transmission electron microscopy (TEM) measurements, and NP shape modeling revealed (i) a cross over from positive to negative thermal expansion with decreasing particle size, (ii) size- and shape-dependent changes in the mean square bond-projected bond-length fluctuations, and (iii) enhanced Debye temperatures (D-circle minus, relative to bulk Pt) with a bimodal size- dependence for NPs in the size range of similar to 0.8-5.4 nm. For large NP sizes (diameter d \u3e 1.5 nm) D-circle minus was found to decrease toward D-circle minus of bulk Pt with increasing NP size. For NPs \u3c = 1 nm, a monotonic decrease of D-circle minus was observed with decreasing NP size and increasing number of low-coordinated surface atoms. Our density functional theory calculations confirm the size- and shape-dependence of the vibrational properties of our smallest NPs and show how their behavior may be tuned by H desorption from the NPs. The experimental results can be partly attributed to thermally induced changes in the coverage of the adsorbate (H-2) used during the EXAFS measurements, bearing in mind that the interaction of the Pt NPs with the stiff, high-melting temperature gamma-Al2O3 support may also play a role. The calculations also provide good qualitative agreement with the trends in the mean square bond-projected bond-length fluctuations measured via EXAFS. Furthermore, they revealed that part of the D-circle minus enhancement observed experimentally for the smallest NPs (d \u3c = 1 nm) might be assigned to the specific sensitivity of EXAFS, which is intrinsically limited to bond-projected bond-length fluctuations

    Fully Parallel 30-MHz, 2.5-Mb CAM

    No full text
    Translation functions in high-speed communications networks such as Internet protocol and asynchronous transfer mode are requiring larger and faster lookup tables. Content addressable memories (CAM's) provide built-in hardware lookup capability with high speed and high flexibility in address allocation. Previous high-capacity CAM's have been inadequate for emerging applications; comparators are time-shared among multiple bits or multiple words, resulting in serialized operation. Fully parallel architectures represent the best solution for highspeed operation, but previous fully parallel CAM's have lacked the capacity required for leading-edge networking applications. This paper describes a fully parallel (single-clock-cycle) CAM chip. The chip uses a 0.35-m digital CMOS technology to achieve 2.5 Mb of CAM storage and 30-MHz operating frequency. Innovative layout techniques are used to achieve two-dimensional decoding, a traditional problem with high-capacity CAM's. Architecture and operation of the chip are described, including a novel NAND match architecture, operation-specific self-timing loops, and on-board cascade management circuits. The chip functions at 31 MHz, with a search access time of 26 ns and an average search power dissipation of 5.2 W at 25 MHz
    • …
    corecore