4 research outputs found

    Identification of ZINC08101049 as a potential IL1β inhibitor through molecular docking and MD simulations for cancer therapeutics

    No full text
    Cancer is a significant global health concern that has a major impact on morbidity and mortality worldwide. Research has demonstrated the involvement of Interleukin-1 beta (IL1β) in various aspects of cancer development and progression, including angiogenesis, tumor growth and metastasis. Consequently, targeting IL1β activity represents a promising approach for cancer therapeutics. In this study, we utilized molecular docking and MD simulations to discover potent IL1β inhibitors for the treatment of cancer. Five thousand compounds from ZINC15 database were screened against IL1β target, and the top ten small molecules were selected based on their binding energy. The small molecule named ‘ZINC08101049’ was prioritized based on binding energy (−9.1 kcal/Mol) and residual interaction specifically forming seven hydrogen bonds with amino acid residues namely GLN81, GLY136, LEU134, LYS138, SER84, THR137 and TYR24 of IL1β. Next, IL1β alone and in complex with ZINC08101049 was subjected to MD simulations to determine their behavior at atomic level. The results of molecular docking and MD simulation revealed ZINC08101049 as a potential inhibitor of IL1β, reflecting that ZINC08101049 can emerge as a promising small molecule paving for cancer therapeutics. Communicated by Ramaswamy H. Sarma</p

    Predictive insights into plant-based compounds as fibroblast growth factor receptor 1 inhibitors: a combined molecular docking and dynamics simulation study

    No full text
    The discovery of novel therapeutic agents with potent anticancer activity remains a critical challenge in drug development. Natural products, particularly bioactive phytoconstituents derived from plants, have emerged as promising sources for anticancer drug discovery. In this study, we used virtual screening techniques to explore the potential of bioactive phytoconstituents as inhibitors of fibroblast growth factor receptor 1 (FGFR1), a key signaling protein implicated in cancer progression. We used virtual screening techniques to analyze phytoconstituents extracted from the IMPPAT 2.0 database. Our primary objective was to discover promising inhibitors of FGFR1. To ensure the selection of promising candidates, we initially filtered the molecules based on their physicochemical properties. Subsequently, we performed binding affinity calculations, PAINS, ADMET, and PASS filters to identify nontoxic and highly effective hits. Through this screening process, one phytocompound, namely Mundulone, emerged as a potential lead. This compound demonstrated an appreciable affinity for FGFR1 and exhibited specific interactions with the ATP-binding site residues. To gain further insights into the conformational dynamics of Mundulone and the reference FGFR1 inhibitor, Lenvatinib, we conducted time-evolution analyses employing 200 ns molecular dynamics simulations (MDS) and essential dynamics. These analyses provided valuable information regarding the dynamic behavior and stability of the compounds in complexes with FGFR1. Overall, the findings indicate that Mundulone exhibits promising binding affinity, specific interactions, and favorable drug profiles, making it a promising lead candidate. Further experimental analysis will be necessary to confirm its effectiveness and safety profiles for therapeutic advancement in the cancer field. Communicated by Ramaswamy H. Sarma</p

    Potent multi-target natural inhibitors against SARS-CoV-2 from medicinal plants of the Himalaya: a discovery from hybrid machine learning, chemoinformatics, and simulation assisted screening

    No full text
    The emergence and immune evasion ability of SARS-CoV-2 Omicron strains, mainly BA.5.2 and BF.7 and other variants of concern have raised global apprehensions. With this context, the discovery of multitarget inhibitors may be proven more comprehensive paradigm than its one-drug-to-one target counterpart. In the current study, a library of 271 phytochemicals from 25 medicinal plants from the Indian Himalayan Region has been virtually screened against SARS-CoV-2 by targeting nine virus proteins, viz., papain-like protease, main protease, nsp12, helicase, nsp14, nsp15, nsp16, envelope, and nucleocapsid for screening of a multi-target inhibitor against the viral replication. Initially, 94 phytochemicals were screened by a hybrid machine learning model constructed by combining 6 confirmatory bioassays against SARS-CoV-2 replication using an instance-based learner lazy k-nearest neighbour classifier. Further, 25 screened compounds with excellent drug-like properties were subjected to molecular docking. The phytochemical Cepharadione A from the plant Piper longum showed binding potential against four proteins with the highest binding energy of −10.90 kcal/mol. The compound has acceptable absorption, distribution, metabolism, excretion, and toxicity properties and exhibits stable binding behaviour in terms of root mean square deviation (0.068 ± 0.05 nm), root-mean-square fluctuation, hydrogen bonds, solvent accessible surface area (83.88–161.89 nm2), and molecular mechanics Poisson-Boltzmann surface area during molecular dynamics simulation of 200 ns with selected target proteins. Concerning the utility of natural compounds in the therapeutics formulation, Cepharadione A could be further investigated as a remarkable lead candidate for the development of therapeutic drugs against SARS-CoV-2. Communicated by Ramaswamy H. Sarma</p

    Stylopine: a potential natural metabolite to block vascular endothelial growth factor receptor 2 (VEGFR2) in osteosarcoma therapy

    No full text
    Vascular endothelial growth factor (VEGF) signals cell survival, cell migration, osteogenesis, cell proliferation, angiogenesis, and vascular permeability by binding to VEGF receptor 2 (VEGFR-2). Osteosarcoma is the most common primary bone cancer, majorly affects young adults. Activation of VEGFR-2 signaling is a therapeutic target for osteosarcoma. The present study aimed to evaluate the potency of stylopine in regulation of the VEGFR-2 signaling pathway and its anti-tumour effect human MG-63 osteosarcoma cells. The in silico study on benzylisoquinoline alkaloids was carried out for analyzing and shortlisting of compounds using a virtual screening, Lipinski's rule, bioavailability graphical RADAR plot, pharmacokinetics, toxicity, and molecular docking studies. Among the benzylisoquinoline alkaloids, stylopine was selected and subjected to in-vitro studies against human MG-63 osteosarcoma cells. Various experiments such as MTT assay, EtBr/AO staining, mitochondrial membrane potential assessment, transwell migration assay, gene expression analysis by a quantitative real time polymerase chain reaction (qRT-PCR) method, SDS-PAGE followed by immunoblotting were performed to evaluate its anti-tumour effect as compared to standard axitinib. The MTT assay indicates that stylopine inhibits cell proliferation in MG-63 cells. Similarly, as confirmed by the EtBr/Ao staining method, the MMP assay indicates that stylopine induces mitochondrial membrane damage and apoptosis as compared to axitinib. Moreover, stylopine inhibits the VEGF-165 induced MG-63 cell migration by a trans-well migration assay. The immunoblotting and qRT-PCR analysis showed that stylopine inhibits the VEGF-165 induced VEGFR2 expression in MG-63 cells. It is concluded that stylopine has potential to regulate VEGFR2 and can inhibit osteosarcoma cells to offer a new drug candidate for the treatment of bone cancer in future. </div
    corecore