8 research outputs found

    Global genomic epidemiology of chromosomally mediated non-enzymatic carbapenem resistance in Acinetobacter baumannii: on the way to predict and modify resistance

    Get PDF
    IntroductionAlthough carbapenemases are frequently reported in resistant A. baumannii clinical isolates, other chromosomally mediated elements of resistance that are considered essential are frequently underestimated. Having a wide substrate range, multidrug efflux pumps frequently underlie antibiotic treatment failure. Recognizing and exploiting variations in multidrug efflux pumps and penicillin-binding proteins (PBPs) is an essential approach in new antibiotic drug discovery and engineering to meet the growing challenge of multidrug-resistant Gram-negative bacteria.MethodsA total of 980 whole genome sequences of A. baumannii were analyzed. Nucleotide sequences for the genes studied were queried against a custom database of FASTA sequences using the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) system. The correlation between different variants and carbapenem Minimum Inhibitory Concentrations (MICs) was studied. PROVEAN and I-Mutant predictor suites were used to predict the effect of the studied amino acid substitutions on protein function and protein stability. Both PsiPred and FUpred were used for domain and secondary structure prediction. Phylogenetic reconstruction was performed using SANS serif and then visualized using iTOL and Phandango.ResultsExhibiting the highest detection rate, AdeB codes for an important efflux-pump structural protein. T48V, T584I, and P660Q were important variants identified in the AdeB-predicted multidrug efflux transporter pore domains. These can act as probable targets for designing new efflux-pump inhibitors. Each of AdeC Q239L and AdeS D167N can also act as probable targets for restoring carbapenem susceptibility. Membrane proteins appear to have lower predictive potential than efflux pump-related changes. OprB and OprD changes show a greater effect than OmpA, OmpW, Omp33, and CarO changes on carbapenem susceptibility. Functional and statistical evidence make the variants T636A and S382N at PBP1a good markers for imipenem susceptibility and potential important drug targets that can modify imipenem resistance. In addition, PBP3_370, PBP1a_T636A, and PBP1a_S382N may act as potential drug targets that can be exploited to counteract imipenem resistance.ConclusionThe study presents a comprehensive epidemiologic and statistical analysis of potential membrane proteins and efflux-pump variants related to carbapenem susceptibility in A. baumannii, shedding light on their clinical utility as diagnostic markers and treatment modification targets for more focused studies of candidate elements

    Biogenic silver nanoparticles eradicate of Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (MRSA) isolated from the sputum of COVID-19 patients

    Get PDF
    In recent investigations, secondary bacterial infections were found to be strongly related to mortality in COVID-19 patients. In addition, Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (MRSA) bacteria played an important role in the series of bacterial infections that accompany infection in COVID-19. The objective of the present study was to investigate the ability of biosynthesized silver nanoparticles from strawberries (Fragaria ananassa L.) leaf extract without a chemical catalyst to inhibit Gram-negative P. aeruginosa and Gram-positive Staph aureus isolated from COVID-19 patient’s sputum. A wide range of measurements was performed on the synthesized AgNPs, including UV–vis, SEM, TEM, EDX, DLS, ζ -potential, XRD, and FTIR. UV-Visible spectral showed the absorbance at the wavelength 398 nm with an increase in the color intensity of the mixture after 8 h passed at the time of preparation confirming the high stability of the FA-AgNPs in the dark at room temperature. SEM and TEM measurements confirmed AgNPs with size ranges of ∼40-∼50 nm, whereas the DLS study confirmed their average hydrodynamic size as ∼53 nm. Furthermore, Ag NPs. EDX analysis showed the presence of the following elements: oxygen (40.46%), and silver (59.54%). Biosynthesized FA-AgNPs (ζ = −17.5 ± 3.1 mV) showed concentration-dependent antimicrobial activity for 48 h in both pathogenic strains. MTT tests showed concentration-dependent and line-specific effects of FA-AgNPs on cancer MCF-7 and normal liver WRL-68 cell cultures. According to the results, synthetic FA-AgNPs obtained through an environmentally friendly biological process are inexpensive and may inhibit the growth of bacteria isolated from COVID-19 patients

    Biogenesis of the outer membrane of Campylobacter jejuni

    No full text

    Distinction between Antimicrobial Resistance and Putative Virulence Genes Characterization in <i>Plesiomonas shigelloides</i> Isolated from Different Sources

    No full text
    Plesiomonas shigelloides are gram-negative, thermotolerant, motile, and pleomorphic microorganisms that are only distantly related to those of the Enterobacteriaceae and Vibrionaceae families. One of the most common sources of P. shigelloides contamination is human stool, but it may also be found in a wide range of other animals, plants, and aquatic habitats. Antimicrobial resistance in P. shigelloides from seawater and shellfish was investigated, and pathogenicity involved genes were characterized as part of this study. Out of 384 samples of shellfish, 5.7% included P. shigelloides. The presence of P. shigelloides was also discovered in 5% of the seawater sampled. The antimicrobial resistance of 23 P. shigelloides isolates derived from those samples was investigated. All isolates were sensitive to nalidixic acid, carbenicillin, cephalothin, erythromycin, kanamycin, tetracycline, and ciprofloxacin in the study. Several strains isolated from diseased shellfish were tested for virulence in shellfish by intraperitoneal injections. The LD50 values ranged from 12 × 108 to 3 × 1012 cfu/shellfish. When looking for possible virulence factors that may play a significant role in bacterial infection in the current study, we found that all of these genes were present in these strains. These include genes such as elastase, lipase, flagellin, enterotoxin, and DNases. According to these findings, shellfish may serve as a reservoir for multi-resistant P. shigelloides and help spread virulence genes across the environment

    Bacterial contamination of cell phones of medical students at King Abdulaziz University, Jeddah, Saudi Arabia

    Get PDF
    AbstractCell phones are commonly used in healthcare settings for rapid communication within hospitals. Concerns have been increased about the use of these devices in hospitals, as they can be used everywhere, even in toilets. Therefore, they can be vehicles for transmitting pathogens to patients. This study aimed to examine the presence of pathogenic bacteria on the surfaces of cell phones that are used frequently by preclinical medical students. This cross-sectional study identified both pathogenic and nonpathogenic bacteria on cell phones of 105 medical students at King Abdulaziz University, Jeddah, Saudi Arabia, using standard microbiological methods. Out of 105 cell phones screened, 101 (96.2%) were contaminated with bacteria. Coagulase-negative staphylococci were the most abundant isolates (68%). Seventeen (16.2%) cell phones were found to harbor Staphylococcus aureus. Gram-positive bacilli were isolated from 20 (19%) samples. Viridans streptococci and Pantoea species were also isolated but at lower levels. Our findings indicate that cell phones can act as reservoirs of both pathogenic and nonpathogenic organisms. Therefore, full guidelines about restricting the use of cell phones in clinical environments, hand hygiene, and frequent decontamination of mobile devices are recommended at an early stage in medical schools, to limit the risk of cross-contamination and healthcare-associated infections caused by cell phones

    Genomic Relevance of FGFR2 on the Prognosis of HCV-Induced Hepatocellular Carcinoma Patients

    No full text
    The Fibroblast Growth Factor Receptors (FGFRs) are known to regulate cancer metabolism in different tumor types, including hepatocellular carcinoma (HCC). Several risk factors are associated with HCC, of which viral infections (Hepatitis B and C) and cirrhosis are prominent. In Pakistan as well as in highly developed countries like the United States, hepatitis C virus HCV infections are most commonly reported in HCC. Here, we aimed to investigate the clinical relevance of FGFR receptors in HCC and their role in HCV-positive HCC cases. 264 HCC samples along with their clinical information and 96 normal liver samples were collected. qPCR was done to estimate the expression of FGFR1, FGFR2, FGFR3 and FGFR4. Three independent HCV-induced HCC cohorts (containing 293 HCC samples) were used for validation. According to in vitro results, FGFR1 was upregulated in HCV+ HCC patients. However, in all three independent cohorts of HCC, significant a down-regulation of FGFR1 was observed. FGFR2 overexpression was observed in the in vitro cohort as well as in three independent HCC cohorts. Interestingly, a strong correlation of FGFR2 expression was observed between cirrhosis and HCV in all four HCC cohorts. Our study suggested that FGFR2 expression can be used to classify HCC patients based on HCV infection. This FGFR2-based classification may lead to new therapeutic strategies against HCV-positive HCC subtypes

    Bee chitosan nanoparticles loaded with apitoxin as a novel approach to eradication of common human bacterial, fungal pathogens and treating cancer

    No full text
    Antimicrobial resistance is one of the largest medical challenges because of the rising frequency of opportunistic human microbial infections across the globe. This study aimed to extract chitosan from the exoskeletons of dead bees and load it with bee venom (commercially available as Apitoxin [Api]). Then, the ionotropic gelation method would be used to form nanoparticles that could be a novel drug-delivery system that might eradicate eight common human pathogens (i.e., two fungal and six bacteria strains). It might also be used to treat the human colon cancer cell line (Caco2 ATCC ATP-37) and human liver cancer cell line (HepG2ATCC HB-8065) cancer cell lines. The x-ray diffraction (XRD), Fourier transform infrared (FTIR), and dynamic light scattering (DLS) properties, ζ-potentials, and surface appearances of the nanoparticles were evaluated by transmission electron microscopy (TEM). FTIR and XRD validated that the Api was successfully encapsulated in the chitosan nanoparticles (ChB NPs). According to the TEM, the ChB NPs and the ChB NPs loaded with Apitoxin (Api@ChB NPs) had a spherical shape and uniform size distribution, with non-aggregation, for an average size of approximately 182 and 274 ± 3.8 nm, respectively, and their Zeta potential values were 37.8 ± 1.2 mV and − 10.9 mV, respectively. The Api@ChB NPs had the greatest inhibitory effect against all tested strains compared with the ChB NPs and Api alone. The minimum inhibitory concentrations (MICs) of the Api, ChB NPs, and Api@ChB NPs were evaluated against the offer mentioned colony forming units (CFU/mL), and their lowest MIC values were 30, 25, and 12.5 μg mL−1, respectively, against Enterococcus faecalis. Identifiable morphological features of apoptosis were observed by 3 T3 Phototox software after Api@ChB NPs had been used to treat the normal Vero ATCC CCL-81, Caco2 ATCC ATP-37, and HepG2 ATCC HB-8065 cancer cell lines for 24 h. The morphological changes were clear in a concentration-dependent manner, and the ability of the cells was 250 to 500 μg mL−1. These results revealed that Api@ChB NPs may be a promising natural nanotreatment for common human pathogens

    Phyto-Phospholipid Conjugated Scorpion Venom Nanovesicles as Promising Carrier That Improves Efficacy of Thymoquinone against Adenocarcinoma Human Alveolar Basal Epithelial Cells

    No full text
    Lung cancer is a dangerous type of cancer in men and the third leading cause of cancer-related death in women, behind breast and colorectal cancers. Thymoquinone (THQ), a main compound in black seed essential oils, has a variety of beneficial effects, including antiproliferative, anti-inflammatory, and antioxidant properties. On the other hand, scorpion venom peptides (SV) induce apoptosis in the cancer cells, making it a promising anticancer agent. THQ, SV, and Phospholipon&reg; 90H (PL) were incorporated in a nano-based delivery platform to assess THQ&rsquo;s cellular uptake and antiproliferative efficacy against a lung cancer cell line derived from human alveolar epithelial cells (A549). Several nanovesicles were prepared and optimized using factorial experimental design. The optimized phytosome formulation contained 79.0 mg of PL and 170.0 mg of SV, with vesicle size and zeta potential of 209.9 nm and 21.1 mV, respectively. The IC50 values revealed that A549 cells were significantly more sensitive to the THQ formula than the plain formula and THQ. Cell cycle analysis revealed that THQ formula treatment resulted in significant cell cycle arrest at the S phase, increasing cell population in this phase by 22.1%. Furthermore, the THQ formula greatly increased cell apoptosis (25.17%) when compared to the untreated control (1.76%), plain formula (11.96%), or THQ alone (13.18%). The results also indicated that treatment with THQ formula significantly increased caspase-3, Bax, Bcl-2, and p53 mRNA expression compared to plain formula and THQ. In terms of the inflammatory markers, THQ formula significantly reduced the activity of TNF-&alpha; and NF-&kappa;B in comparison with the plain formula and THQ only. Overall, the findings from the study proved that a phytosome formulation of THQ could be a promising therapeutic approach for the treatment of lung adenocarcinoma
    corecore