8 research outputs found

    Maternal glucocorticoid exposure alters tight junction protein expression in the brain of fetal sheep

    No full text
    We examined the expression of tight junction (TJ) proteins in the cerebral cortex, cerebellum, and spinal cord of fetuses after maternal treatment with single and multiple courses of dexamethasone. Ewes received either single courses of four 6-mg dexamethasone or placebo injections every 12 h for 48 h between 104 and 107 days or the same treatment once a week between 76–78 and 104–107 days of gestation. TJ protein expression was determined by Western immunoblot analysis on tissue harvested at 105–108 days of gestation. Blood-brain barrier permeability has been previously quantified with the blood-to-brain transfer constant (Ki) with α-aminoisobutyric acid (39). After a single course of dexamethasone, claudin-5 increased (P < 0.05) in the cerebral cortex, occludin and claudin-1 increased in the cerebellum, and occludin increased in the spinal cord. After multiple dexamethasone courses, occludin and zonula occludens (ZO)-1 increased in the cerebral cortex, and occludin and claudin-1 increased in the cerebellum. Junctional adhesion molecule-A and ZO-2 expressions did not change. Linear regression comparing Ki to TJ proteins showed inverse correlations with claudin-1 and claudin-5 in the cerebral cortex after a single course and ZO-2 in the spinal cord after multiple courses and direct correlations with ZO-1 in the cerebellum and spinal cord after multiple courses. We conclude that maternal glucocorticoid treatment increases the expression of specific TJ proteins in vivo, patterns of TJ protein expression vary after exposure to single and multiple glucocorticoid courses, and decreases in blood-brain barrier permeability are associated with increases in claudin-1, claudin-5, and ZO-2 expression and decreases in ZO-1 expression. In utero glucocorticoid exposure alters the molecular composition of the barrier and affects fetal blood-brain barrier function

    Effect of sustained postnatal systemic inflammation on hippocampal volume and function in mice.

    No full text
    BACKGROUND: Premature infants are at risk for persistent neurodevelopmental impairment. Children born preterm often exhibit reduced hippocampal volumes that correlate with deficits in working memory. Perinatal inflammation is associated with preterm birth and brain abnormalities. Here we examine the effects of postnatal systemic inflammation on the developing hippocampus in mice. METHODS: Pups received daily intraperitoneal injections of lipopolysaccharide (LPS) or saline between days 3 and 13. Ex vivo magnetic resonance imaging (MRI) and microscopic analysis of brain tissue was performed on day 14. Behavioral testing was conducted at 8-9 wk of age. RESULTS: MR and microscopic analysis revealed a 15-20% reduction in hippocampal volume in LPS-treated mice compared with controls. Behavioral testing revealed deficits in hippocampal-related tasks in LPS-treated animals. Adult mice exposed to LPS during the postnatal period were unable to select a novel environment when re-placed within a 1-min delay, were less able to remember a familiar object after a 1-h delay, and had impaired retention of associative fear learning after 24 h. CONCLUSION: Systemic inflammation sustained during the postnatal period contributes to reduced hippocampal volume and deficits in hippocampus-dependent working memory. These findings support the novel and emerging concept that sustained systemic inflammation contributes to neurodevelopmental impairment among preterm infants

    Editor’s Focus

    No full text
    corecore