35 research outputs found

    Burden-driven feedback control of gene expression

    Get PDF
    Cells use feedback regulation to ensure robust growth despite fluctuating demands for resources and differing environmental conditions. However, the expression of foreign proteins from engineered constructs is an unnatural burden that cells are not adapted for. Here we combined RNA-seq with an in vivo assay to identify the major transcriptional changes that occur in Escherichia coli when inducible synthetic constructs are expressed. We observed that native promoters related to the heat-shock response activated expression rapidly in response to synthetic expression, regardless of the construct. Using these promoters, we built a dCas9-based feedback-regulation system that automatically adjusts the expression of a synthetic construct in response to burden. Cells equipped with this general-use controller maintained their capacity for native gene expression to ensure robust growth and thus outperformed unregulated cells in terms of protein yield in batch production. This engineered feedback is to our knowledge the first example of a universal, burden-based biomolecular control system and is modular, tunable and portable

    Engineering sensors for gene expression burden

    No full text
    RNA-seq enables the analysis of gene expression profiles across different conditions and organisms. Gene expression burden slows down growth, which results in poor predictability of gene constructs and product yields. Here, we describe how we applied RNA-seq to study the transcriptional profiles of Escherichia coli when burden is elicited during heterologous gene expression. We then present how we selected early responsive promoters from our RNA-seq results to design sensors for gene expression burden. Finally, we describe how we used one of these sensors to develop a burden-driven feedback regulator to improve cellular fitness in engineered E. coli
    corecore