25 research outputs found
Lower bounds for several online variants of bin packing
We consider several previously studied online variants of bin packing and
prove new and improved lower bounds on the asymptotic competitive ratios for
them. For that, we use a method of fully adaptive constructions. In particular,
we improve the lower bound for the asymptotic competitive ratio of online
square packing significantly, raising it from roughly 1.68 to above 1.75.Comment: WAOA 201
The Container Selection Problem
We introduce and study a network resource management problem that is a special case of non-metric k-median, naturally arising in cross platform scheduling and cloud computing. In the continuous d-dimensional container selection problem, we are given a set C of input points in d-dimensional Euclidean space, for some d >= 2, and a budget k. An input point p can be assigned to a "container point" c only if c dominates p in every dimension. The assignment cost is then equal to the L1-norm of the container point. The goal is to find k container points in the d-dimensional space, such that the total assignment cost for all input points is minimized. The discrete variant of the problem has one key distinction, namely, the container points must be chosen from a given set F of points.
For the continuous version, we obtain a polynomial time approximation scheme for any fixed dimension d>= 2. On the negative side, we show that the problem is NP-hard for any d>=3. We further show that the discrete version is significantly harder, as it is NP-hard to approximate without violating the budget k in any dimension d>=3. Thus, we focus on obtaining bi-approximation algorithms. For d=2, the bi-approximation guarantee is (1+epsilon,3), i.e., for any epsilon>0, our scheme outputs a solution of size 3k and cost at most (1+epsilon) times the optimum. For fixed d>2, we present a (1+epsilon,O((1/epsilon)log k)) bi-approximation algorithm
Parameterized Algorithms for Graph Partitioning Problems
We study a broad class of graph partitioning problems, where each problem is
specified by a graph , and parameters and . We seek a subset
of size , such that is at most
(or at least) , where are constants
defining the problem, and are the cardinalities of the edge sets
having both endpoints, and exactly one endpoint, in , respectively. This
class of fixed cardinality graph partitioning problems (FGPP) encompasses Max
-Cut, Min -Vertex Cover, -Densest Subgraph, and -Sparsest
Subgraph.
Our main result is an algorithm for any problem in
this class, where is the maximum degree in the input graph.
This resolves an open question posed by Bonnet et al. [IPEC 2013]. We obtain
faster algorithms for certain subclasses of FGPPs, parameterized by , or by
. In particular, we give an time algorithm for Max
-Cut, thus improving significantly the best known time
algorithm
Changing Bases: Multistage Optimization for Matroids and Matchings
This paper is motivated by the fact that many systems need to be maintained
continually while the underlying costs change over time. The challenge is to
continually maintain near-optimal solutions to the underlying optimization
problems, without creating too much churn in the solution itself. We model this
as a multistage combinatorial optimization problem where the input is a
sequence of cost functions (one for each time step); while we can change the
solution from step to step, we incur an additional cost for every such change.
We study the multistage matroid maintenance problem, where we need to maintain
a base of a matroid in each time step under the changing cost functions and
acquisition costs for adding new elements. The online version of this problem
generalizes online paging. E.g., given a graph, we need to maintain a spanning
tree at each step: we pay for the cost of the tree at time
, and also for the number of edges changed at
this step. Our main result is an -approximation, where is
the number of elements/edges and is the rank of the matroid. We also give
an approximation for the offline version of the problem. These
bounds hold when the acquisition costs are non-uniform, in which caseboth these
results are the best possible unless P=NP.
We also study the perfect matching version of the problem, where we must
maintain a perfect matching at each step under changing cost functions and
costs for adding new elements. Surprisingly, the hardness drastically
increases: for any constant , there is no
-approximation to the multistage matching maintenance
problem, even in the offline case
Spotting Trees with Few Leaves
We show two results related to the Hamiltonicity and -Path algorithms in
undirected graphs by Bj\"orklund [FOCS'10], and Bj\"orklund et al., [arXiv'10].
First, we demonstrate that the technique used can be generalized to finding
some -vertex tree with leaves in an -vertex undirected graph in
time. It can be applied as a subroutine to solve the
-Internal Spanning Tree (-IST) problem in
time using polynomial space, improving upon previous algorithms for this
problem. In particular, for the first time we break the natural barrier of
. Second, we show that the iterated random bipartition employed by
the algorithm can be improved whenever the host graph admits a vertex coloring
with few colors; it can be an ordinary proper vertex coloring, a fractional
vertex coloring, or a vector coloring. In effect, we show improved bounds for
-Path and Hamiltonicity in any graph of maximum degree
or with vector chromatic number at most 8