25 research outputs found

    Lower bounds for several online variants of bin packing

    Full text link
    We consider several previously studied online variants of bin packing and prove new and improved lower bounds on the asymptotic competitive ratios for them. For that, we use a method of fully adaptive constructions. In particular, we improve the lower bound for the asymptotic competitive ratio of online square packing significantly, raising it from roughly 1.68 to above 1.75.Comment: WAOA 201

    The Container Selection Problem

    Get PDF
    We introduce and study a network resource management problem that is a special case of non-metric k-median, naturally arising in cross platform scheduling and cloud computing. In the continuous d-dimensional container selection problem, we are given a set C of input points in d-dimensional Euclidean space, for some d >= 2, and a budget k. An input point p can be assigned to a "container point" c only if c dominates p in every dimension. The assignment cost is then equal to the L1-norm of the container point. The goal is to find k container points in the d-dimensional space, such that the total assignment cost for all input points is minimized. The discrete variant of the problem has one key distinction, namely, the container points must be chosen from a given set F of points. For the continuous version, we obtain a polynomial time approximation scheme for any fixed dimension d>= 2. On the negative side, we show that the problem is NP-hard for any d>=3. We further show that the discrete version is significantly harder, as it is NP-hard to approximate without violating the budget k in any dimension d>=3. Thus, we focus on obtaining bi-approximation algorithms. For d=2, the bi-approximation guarantee is (1+epsilon,3), i.e., for any epsilon>0, our scheme outputs a solution of size 3k and cost at most (1+epsilon) times the optimum. For fixed d>2, we present a (1+epsilon,O((1/epsilon)log k)) bi-approximation algorithm

    Parameterized Algorithms for Graph Partitioning Problems

    Full text link
    We study a broad class of graph partitioning problems, where each problem is specified by a graph G=(V,E)G=(V,E), and parameters kk and pp. We seek a subset UVU\subseteq V of size kk, such that α1m1+α2m2\alpha_1m_1 + \alpha_2m_2 is at most (or at least) pp, where α1,α2R\alpha_1,\alpha_2\in\mathbb{R} are constants defining the problem, and m1,m2m_1, m_2 are the cardinalities of the edge sets having both endpoints, and exactly one endpoint, in UU, respectively. This class of fixed cardinality graph partitioning problems (FGPP) encompasses Max (k,nk)(k,n-k)-Cut, Min kk-Vertex Cover, kk-Densest Subgraph, and kk-Sparsest Subgraph. Our main result is an O(4k+o(k)Δk)O^*(4^{k+o(k)}\Delta^k) algorithm for any problem in this class, where Δ1\Delta \geq 1 is the maximum degree in the input graph. This resolves an open question posed by Bonnet et al. [IPEC 2013]. We obtain faster algorithms for certain subclasses of FGPPs, parameterized by pp, or by (k+p)(k+p). In particular, we give an O(4p+o(p))O^*(4^{p+o(p)}) time algorithm for Max (k,nk)(k,n-k)-Cut, thus improving significantly the best known O(pp)O^*(p^p) time algorithm

    Changing Bases: Multistage Optimization for Matroids and Matchings

    Full text link
    This paper is motivated by the fact that many systems need to be maintained continually while the underlying costs change over time. The challenge is to continually maintain near-optimal solutions to the underlying optimization problems, without creating too much churn in the solution itself. We model this as a multistage combinatorial optimization problem where the input is a sequence of cost functions (one for each time step); while we can change the solution from step to step, we incur an additional cost for every such change. We study the multistage matroid maintenance problem, where we need to maintain a base of a matroid in each time step under the changing cost functions and acquisition costs for adding new elements. The online version of this problem generalizes online paging. E.g., given a graph, we need to maintain a spanning tree TtT_t at each step: we pay ct(Tt)c_t(T_t) for the cost of the tree at time tt, and also TtTt1| T_t\setminus T_{t-1} | for the number of edges changed at this step. Our main result is an O(logmlogr)O(\log m \log r)-approximation, where mm is the number of elements/edges and rr is the rank of the matroid. We also give an O(logm)O(\log m) approximation for the offline version of the problem. These bounds hold when the acquisition costs are non-uniform, in which caseboth these results are the best possible unless P=NP. We also study the perfect matching version of the problem, where we must maintain a perfect matching at each step under changing cost functions and costs for adding new elements. Surprisingly, the hardness drastically increases: for any constant ϵ>0\epsilon>0, there is no O(n1ϵ)O(n^{1-\epsilon})-approximation to the multistage matching maintenance problem, even in the offline case

    Spotting Trees with Few Leaves

    Full text link
    We show two results related to the Hamiltonicity and kk-Path algorithms in undirected graphs by Bj\"orklund [FOCS'10], and Bj\"orklund et al., [arXiv'10]. First, we demonstrate that the technique used can be generalized to finding some kk-vertex tree with ll leaves in an nn-vertex undirected graph in O(1.657k2l/2)O^*(1.657^k2^{l/2}) time. It can be applied as a subroutine to solve the kk-Internal Spanning Tree (kk-IST) problem in O(min(3.455k,1.946n))O^*(\min(3.455^k, 1.946^n)) time using polynomial space, improving upon previous algorithms for this problem. In particular, for the first time we break the natural barrier of O(2n)O^*(2^n). Second, we show that the iterated random bipartition employed by the algorithm can be improved whenever the host graph admits a vertex coloring with few colors; it can be an ordinary proper vertex coloring, a fractional vertex coloring, or a vector coloring. In effect, we show improved bounds for kk-Path and Hamiltonicity in any graph of maximum degree Δ=4,,12\Delta=4,\ldots,12 or with vector chromatic number at most 8
    corecore