918 research outputs found

    Atomic-resolution imaging of magnetism via ptychographic phase retrieval

    Full text link
    Atomic-scale characterization of spin textures in solids is essential for understanding and tuning properties of magnetic materials and devices. While high-energy electrons are employed for atomic-scale imaging of materials, they are insensitive to the spin textures. In general, the magnetic contribution to the phase of high-energy electron wave is 1000 times weaker than the electrostatic potential. Via accurate phase retrieval through electron ptychography, here we show that the magnetic phase can be separated from the electrostatic one, opening the door to atomic-resolution characterization of spin textures in magnetic materials and spintronic devices.Comment: 20 pages, 9 figure

    Federated Meta-Learning for Few-Shot Fault Diagnosis with Representation Encoding

    Full text link
    Deep learning-based fault diagnosis (FD) approaches require a large amount of training data, which are difficult to obtain since they are located across different entities. Federated learning (FL) enables multiple clients to collaboratively train a shared model with data privacy guaranteed. However, the domain discrepancy and data scarcity problems among clients deteriorate the performance of the global FL model. To tackle these issues, we propose a novel framework called representation encoding-based federated meta-learning (REFML) for few-shot FD. First, a novel training strategy based on representation encoding and meta-learning is developed. It harnesses the inherent heterogeneity among training clients, effectively transforming it into an advantage for out-of-distribution generalization on unseen working conditions or equipment types. Additionally, an adaptive interpolation method that calculates the optimal combination of local and global models as the initialization of local training is proposed. This helps to further utilize local information to mitigate the negative effects of domain discrepancy. As a result, high diagnostic accuracy can be achieved on unseen working conditions or equipment types with limited training data. Compared with the state-of-the-art methods, such as FedProx, the proposed REFML framework achieves an increase in accuracy by 2.17%-6.50% when tested on unseen working conditions of the same equipment type and 13.44%-18.33% when tested on totally unseen equipment types, respectively

    Lumped-Element Sections for Modeling Coupling Between High-Speed Digital and I/O Lines

    Get PDF
    Lumped-element sections are used for modeling coupling between high-speed digital and I/O lines on printed circuit boards (PCBs) in this paper. Radiated electromagnetic interference (EMI) is investigated when the I/O line going off the board is driven as an unintentional, but effective antenna. Simulated results are compared with measurements for coupled lines. A suitable number of lumped-element sections for modeling is chosen based on the line length and the highest frequency of interest

    Characterizing the Blood Oxygen Level-Dependent Fluctuations in Musculoskeletal Tumours Using Functional Magnetic Resonance Imaging

    Get PDF
    This study characterized the blood oxygen level-dependent (BOLD) fluctuations in benign and malignant musculoskeletal tumours via power spectrum analyses in pre-established low-frequency bands. BOLD MRI and T1-weighted imaging (T1WI) were collected for 52 patients with musculoskeletal tumours. Three ROIs were drawn on the T1WI image in the tumours’ central regions, peripheral regions and neighbouring tissue. The power spectrum of the BOLD within each ROI was calculated and divided into the following four frequency bands: 0.01–0.027 Hz, 0.027–0.073 Hz, 0.073–0.198 Hz, and 0.198–0.25 Hz. ANOVA was conducted for each frequency band with the following two factors: the location of the region of interest (LoR, three levels: tumour “centre”, “peripheral” and “healthy tissue”) and tumour characteristic (TC, two levels: “malignant” and “benign”). There was a significant main effect of LoR in the frequencies of 0.073–0.198 Hz and 0.198–0.25 Hz. These data were further processed with post-hoc pair-wise comparisons. BOLD fluctuations at 0.073–0.198 Hz were stronger in the peripheral than central regions of the malignant tumours; however, no such difference was observed for the benign tumours. Our findings provide evidence that the BOLD signal fluctuates with spatial heterogeneity in malignant musculoskeletal tumours at the frequency band of 0.073–0.198 Hz

    Study of Peeling of Single Crystal Silicon by Intense Pulsed Ion Beam

    Get PDF
    The surface peeling process induced by intense pulsed ion beam (IPIB) irradiation was studied. Single crystal silicon specimens were treated by IPIB with accelerating voltage of 350 kV current density of 130 A/cm2. It is observed that under smaller numbers of IPIB shots, the surface may undergo obvious melting and evaporation..

    Case Study of "Wake Effect" of Adjacent Offshore Wind Farms

    Get PDF
    [Introduction] The purpose of this paper is to study the influence of real "wake effect" of adjacent offshore wind farms on generation loss. [Method] The method is established with the wake scene classification based on the actual arrangement of wind farms under different wind direction and the real wake power loss of adjacent wind farms (with a spacing of more than 20D) in operation are analyzed, based on the actual SCADA data of wind turbines in large offshore wind farms and the measured wind data of LIDAR in the same period. [Result] The results show that: for the large-scale offshore wind farms with regular arrangement, the power generation normalization of the actual SCADA data can better reflect the distribution characteristics of offshore wind energy resources and the difference of power generation capacity; Under the condition of highly centralized wind direction, the adjacent wind farms in the downwind are obviously affected by the "wake effect" of the upwind wind farm; The buffer zones with different distances of adjacent wind farms have an obvious effect on the recovery of wind speed which affected the power generating capacity. The power generating capacity can be improved but if the buffer zone can reach enough distance; In different scenes of this case, the buffer zone distance is between 23D and 44D, and the power loss of wake decreases by 27%~4%. [Conclusion] This work can provide guidance for the planning of offshore wind power base and the optimization design of large offshore wind frams

    Study of Peeling of Single Crystal Silicon by Intense Pulsed Ion Beam

    Get PDF
    The surface peeling process induced by intense pulsed ion beam (IPIB) irradiation was studied. Single crystal silicon specimens were treated by IPIB with accelerating voltage of 350 kV current density of 130 A/cm2. It is observed that under smaller numbers of IPIB shots, the surface may undergo obvious melting and evaporation..

    Study on Ablation Products of Zinc by Intense Pulsed Ion Beam Irradiation

    Get PDF
    As a kind of flash heat source, intense pulse ion beam can be used for material surface modification. The ablation effect has important influence on interaction between IPIB and material. Therefore, the understanding of ablation mechanism is of great significance to IPIB application..
    corecore