52 research outputs found

    A Signal-Passing DNA-Strand-Exchange Mechanism for Active Self-Assembly of DNA Nanostructures

    Get PDF
    DNA nanostructured tiles play an active role in their own self-assembly in the system described herein whereby they initiate a binding event that produces a cascading assembly process. We present DNA tiles that have a simple but powerful property: they respond to a binding event at one end of the tile by passing a signal across the tile to activate a binding site at the other end. This action allows sequential, virtually irreversible self-assembly of tiles and enables local communication during the self-assembly process. This localized signal-passing mechanism provides a new element of control for autonomous self-assembly of DNA nanostructures

    Exciton Delocalization in a DNA-Templated Organic Semiconductor Dimer Assembly

    Get PDF
    A chiral dimer of an organic semiconductor was assembled from octaniline (octamer of polyaniline) conjugated to DNA. Facile reconfiguration between the monomer and dimer of octaniline–DNA was achieved. The geometry of the dimer and the exciton coupling between octaniline molecules in the assembly was studied both experimentally and theoretically. The octaniline dimer was readily switched between different electronic states by protonic doping and exhibited a Davydov splitting comparable to those previously reported for DNA–dye systems employing dyes with strong transition dipoles. This approach provides a possible platform for studying the fundamental properties of organic semiconductors with DNA-templated assemblies, which serve as candidates for artificial light-harvesting systems and excitonic devices

    Site-Specific Inter-Strand Cross-Links of DNA Duplexes

    Get PDF
    We report the development of technology that allows inter-strand coupling across various positions within one turn of DNA. Four 2\u27-modified nucleotides were synthesized as protected phosphoramidites and incorporated into DNA oligonucleotides. The modified nucleotides contain either 5-atom or 16-atom linker components, with either amine or carboxylic acid functional groups at their termini, forming 10 or 32 atom (11 or 33 bond) linkages. Chemical coupling of the amine and carboxylate groups in designed strands resulted in the formation of an amide bond. Coupling efficiency as a function of trajectory distance between the individual linker components was examined. For those nucleotides capable of forming inter-strand cross-links (ICLs), coupling yields were found to depend on temperature, distance, and linker length, enabling several approaches that can control regioselective linkage. In the most favorable cases, the coupling yields are quantitative. Spectroscopic measurements of strands that were chemically cross-linked indicate that the global structure of the DNA duplex does not appear to be distorted from the B form after coupling. Thermal denaturing profiles of those strands were shifted to somewhat higher temperatures than those of their respective control duplexes. Thus, the robust amide ICLs formed by this approach are site-specific, do not destabilize the rest of the duplex, and only minimally perturb the secondary structure

    PX Motif of DNA Binds Specifically to Escherichia coli DNA Polymerase I

    Get PDF
    The PX motif of DNA is a four-stranded structure in which two parallel juxtaposed double-helical domains are fused by crossovers at every point where the strands approach each other. Consequently, its twist and writhe are approximately half of those of conventional DNA. This property has been shown to relax supercoiled plasmid DNA under circumstances in which head-to-head homology exists within the plasmid; the homology can be either complete homology or every-other-half-turn homology, known as PX homology. It is clearly of interest to establish whether the cell contains proteins that interact with this unusual and possibly functional motif. We have examined Escherichia coli extracts to seek such a protein. We find by gel mobility studies that the PX motif is apparently bound by a cellular component. Fractionation of this binding activity reveals that the component is DNA polymerase I (Pol I). Although the PX motif binds to Pol I, we find that PX-DNA is not able to serve as a substrate for the extension of a shortened strand. We cannot say at this time whether the binding is a coincidence or whether it represents an activity of Pol I that is currently unknown. We have modeled the interaction of Pol I and PX-DNA using symmetry considerations and molecular dynamics

    Modifying the Surface Features of Two-Dimensional DNA Crystals

    No full text

    A Bipedal DNA Brownian Motor with Coordinated Legs

    No full text
    • …
    corecore