5,645 research outputs found
Assumptions of IV Methods for Observational Epidemiology
Instrumental variable (IV) methods are becoming increasingly popular as they
seem to offer the only viable way to overcome the problem of unobserved
confounding in observational studies. However, some attention has to be paid to
the details, as not all such methods target the same causal parameters and some
rely on more restrictive parametric assumptions than others. We therefore
discuss and contrast the most common IV approaches with relevance to typical
applications in observational epidemiology. Further, we illustrate and compare
the asymptotic bias of these IV estimators when underlying assumptions are
violated in a numerical study. One of our conclusions is that all IV methods
encounter problems in the presence of effect modification by unobserved
confounders. Since this can never be ruled out for sure, we recommend that
practical applications of IV estimators be accompanied routinely by a
sensitivity analysis.Comment: Published in at http://dx.doi.org/10.1214/09-STS316 the Statistical
Science (http://www.imstat.org/sts/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Oxygen Hydration Mechanism for the Oxygen Reduction Reaction at Pt and Pd Fuel Cell Catalysts
We report the reaction pathways and barriers for the oxygen reduction reaction (ORR) on platinum, both for gas phase and in solution, based on quantum mechanics calculations (PBE-DFT) on semi-infinite slabs. We find a new mechanism in solution: O_2 → 2O_(ad) (E_(act) = 0.00 eV), O_(ad) + H_2O_(ad) → 2OH_(ad) (E_(act) = 0.50 eV), OH_(ad) + H_(ad) → H_2O_(ad) (E_(act) = 0.24 eV), in which OH_(ad) is formed by the hydration of surface O_(ad). For the gas phase (hydrophilic phase of Nafion), we find that the favored step for activation of the O_2 is H_(ad) + O_(2ad) → HOO_(ad) (E_(act) = 0.30 eV) → HO_(ad) + O_(ad) (E_(act) = 0.12 eV) followed by O_(ad) + H_2O_(ad) → 2OH_(ad) (E_(act) = 0.23 eV), OH_(ad) + H_(ad) → H_2O_(ad) (E_(act) = 0.14 eV). This suggests that to improve the efficiency of ORR catalysts, we should focus on decreasing the barrier for Oad hydration while providing hydrophobic conditions for the OH and H_2O formation steps
Theoretical Study of Solvent Effects on the Platinum-Catalyzed Oxygen Reduction Reaction
We report here density functional theory (DFT) studies (PBE) of the reaction intermediates and barriers involved in the oxygen reduction reaction (ORR) on a platinum fuel cell catalyst. Solvent effects were taken into account by applying continuum Poisson−Boltzmann theory to the bound adsorbates and to the transition states of the various reactions on the platinum (111) surface. Our calculations show that the solvent effects change significantly the reaction barriers compared with those in the gas-phase environment (without solvation). The O_2 dissociation barrier decreases from 0.58 to 0.27 eV, whereas the H + O → OH formation barrier increases from 0.73 to 1.09 eV. In the water-solvated phase, OH formation becomes the rate-determining step for both ORR mechanisms, O_2 dissociation and OOH association, proposed earlier for the gas-phase environment. Both mechanisms become significantly less favorable for the platinum catalytic surface in water solvent, suggesting that alternative mechanisms must be considered to describe properly the ORR on the platinum surface
Magnons in Ferromagnetic Metallic Manganites
Ferromagnetic (FM) manganites, a group of likely half-metallic oxides, are of
special interest not only because they are a testing ground of the classical
doubleexchange interaction mechanism for the colossal magnetoresistance, but
also because they exhibit an extraordinary arena of emergent phenomena. These
emergent phenomena are related to the complexity associated with strong
interplay between charge, spin, orbital, and lattice. In this review, we focus
on the use of inelastic neutron scattering to study the spin dynamics, mainly
the magnon excitations in this class of FM metallic materials. In particular,
we discussed the unusual magnon softening and damping near the Brillouin zone
boundary in relatively narrow band compounds with strong Jahn-Teller lattice
distortion and charge/orbital correlations. The anomalous behaviors of magnons
in these compounds indicate the likelihood of cooperative excitations involving
spin, lattice, as well as orbital degrees of freedom.Comment: published in J. Phys.: Cond. Matt. 20 figure
Mechanism for Degradation of Nafion in PEM Fuel Cells from Quantum Mechanics Calculations
We report results of quantum mechanics (QM) mechanistic studies of Nafion membrane degradation in a polymer electrolyte membrane (PEM) fuel cell. Experiments suggest that Nafion degradation is caused by generation of trace radical species (such as OH^●, H^●) only when in the presence of H_2, O_2, and Pt. We use density functional theory (DFT) to construct the potential energy surfaces for various plausible reactions involving intermediates that might be formed when Nafion is exposed to H_2 (or H^+) and O_2 in the presence of the Pt catalyst. We find a barrier of 0.53 eV for OH radical formation from HOOH chemisorbed on Pt(111) and of 0.76 eV from chemisorbed OOH_(ad), suggesting that OH might be present during the ORR, particularly when the fuel cell is turned on and off. Based on the QM, we propose two chemical mechanisms for OH radical attack on the Nafion polymer: (1) OH attack on the S–C bond to form H_2SO_4 plus a carbon radical (barrier: 0.96 eV) followed by decomposition of the carbon radical to form an epoxide (barrier: 1.40 eV). (2) OH attack on H_2 crossover gas to form hydrogen radical (barrier: 0.04 eV), which subsequently attacks a C–F bond to form HF plus carbon radicals (barrier as low as 1.00 eV). This carbon radical can then decompose to form a ketone plus a carbon radical with a barrier of 0.86 eV. The products (HF, OCF_2, SCF_2) of these proposed mechanisms have all been observed by F NMR in the fuel cell exit gases along with the decrease in pH expected from our mechanism
Fantastic Behavior of High-TC Superconductor Junctions: Tunable Superconductivity
Carrier injection performed in oxygen-deficient YBa2Cu3O7(YBCO)
hetero-structure junctions exhibited tunable resistance that was entirely
different with behaviors of semiconductor devices. Tunable superconductivity in
YBCO junctions, increasing over 20 K in transition temperature, has achieved by
using electric processes. To our knowledge, this is the first observation that
intrinsic property of high TC superconductors superconductivity can be adjusted
as tunable functional parameters of devices. The fantastic phenomenon caused by
carrier injection was discussed based on a proposed charge carrier
self-trapping model and BCS theory.Comment: 5 pages, 4 figure
- …