32 research outputs found

    Resonance Phenomenon Related to Spectral Singularities, Complex Barrier Potential, and Resonating Waveguides

    Full text link
    A peculiar property of complex scattering potentials is the appearance of spectral singularities. These are energy eigenvalues for certain scattering states that similarly to resonance states have infinite reflection and transmission coefficients. This property reveals an interesting resonance effect with possible applications in waveguide physics. We study the spectral singularities of a complex barrier potential and explore their application in designing a waveguide that functions as a resonator. We show that for the easily accessible sizes of the waveguide and its gain region, we can realize the spectral singularity-related resonance phenomenon at almost every wavelength within the visible spectrum or outside it.Comment: Published version, 20 pages, 2 tables, 7 figure

    Resonant Photonic States in Coupled Heterostructure Photonic Crystal Waveguides

    Get PDF
    In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors
    corecore