3 research outputs found

    Clinical metabolomics identifies blood serum branched chain amino acids as potential predictive biomarkers for chronic graft vs. host disease

    Get PDF
    The allogeneic hematopoietic stem cell transplantation procedure-the only curative therapy for many types of hematological cancers-is increasing, and graft vs. host disease (GVHD) is the main cause of morbidity and mortality after transplantation. Currently, GVHD diagnosis is clinically performed. Whereas, biomarker panels have been developed for acute GVHD (aGVHD), there is a lack of information about the chronic form (cGVHD). Using nuclear magnetic resonance (NMR) and gas chromatography coupled to time-of-flight (GC-TOF) mass spectrometry, this study prospectively evaluated the serum metabolome of 18 Brazilian patients who had undergone allogeneic hematopoietic stem cell transplantation (HSCT). We identified and quantified 63 metabolites and performed the metabolomic profile on day -10, day 0, day +10 and day +100, in reference to day of transplantation. Patients did not present aGVHD or cGVHD clinical symptoms at sampling times. From 18 patients analyzed, 6 developed cGVHD. The branched-chain amino acids (BCAAs) leucine and isoleucine were reduced and the sulfur-containing metabolite (cystine) was increased at day +10 and day +100. The area under receiver operating characteristics (ROC) curves was higher than 0.79. BCAA findings were validated by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in 49 North American patients at day +100; however, cystine findings were not statistically significant in this patient set. Our results highlight the importance of multi-temporal and multivariate biomarker panels for predicting and understanding cGVHD9FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP2011/06441-

    Effect of particle functionalization and solution properties on the adsorption of bovine serum albumin and lysozyme onto silica nanoparticles

    No full text
    Silica nanoparticles present an enormous potential as controlled drug delivery systems with high selectivity towards diseased cells. This application is directly related to the phenomenon of protein corona, characterized by the spontaneous adsorption of proteins on the nanoparticle surface, which is not fully understood. Here, we report an investigation on the influence of pH, ionic strength and temperature on the thermodynamics of interaction of bovine serum albumin protein (BSA) with non-functionalized silica nanoparticles (SiO2NPs). Complementary, we also investigated the ability of polyethylene glycol (PEG) and zwitterionic sulfobetaine (SBS) surface-modified nanoparticles to prevent the adsorption of BSA (protein negatively charged at physiological pH) and lysozyme (protein positively charged at physiological pH). We showed that BSA interaction with SiO2NPs is enthalpically governed. On the other hand, functionalization of silica nanoparticles with PEG and SBS completely prevented BSA adsorption. However, these functionalized nanoparticles presented a negative zeta potential and were not able to suppress lysozyme anchoring due to strong nanoparticle-protein electrostatic attraction. Due to the similarity of BSA with Human Serum Albumin, this investigation bears a resemblance to processes involved in the phenomenon of protein corona in human blood, producing information that is relevant for the future biomedical use of functionalized nanoparticles.Fil: Galdino, Flávia Elisa. Universidade Estadual de Campinas; Brasil. National Center for Research in Energy and Materials. Brazilian Nanotechnology National Laboratory; BrasilFil: Picco, Agustin Silvio. National Center for Research in Energy and Materials. Brazilian Nanotechnology National Laboratory; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Sforca, Mauricio Luis. National Center for Research in Energy and Materials. Brazilian Biosciences Laboratory; BrasilFil: Cardoso, Mateus Broba. Universidade Estadual de Campinas; Brasil. National Center for Research in Energy and Materials. Brazilian Nanotechnology National Laboratory; BrasilFil: Loh, Watson. Universidade Estadual de Campinas; Brasi

    Backbone and side chain NMR assignments of Geobacillus stearothermophilus ZapA allow identification of residues that mediate the interaction of ZapA with FtsZ

    No full text
    Bacterial division begins with the formation of a contractile protein ring at midcell, which constricts the bacterial envelope to generate two daughter cells. The central component of the division ring is FtsZ, a tubulin-like protein capable of self-assembling into filaments which further associate into a higher order structure known as the Z ring. Proteins that bind to FtsZ play a crucial role in the formation and regulation of the Z ring. One such protein is ZapA, a widely conserved 21 kDa homodimeric protein that associates with FtsZ filaments and promotes their bundling. Although ZapA was discovered more than a decade ago, the structural details of its interaction with FtsZ remain unknown. In this work, backbone and side chain NMR assignments for the Geobacillus stearothermophilus ZapA homodimer are described. We titrated FtsZ into (NH)-N-15-H-2-ZapA and mapped ZapA residues whose resonances are perturbed upon FtsZ binding. This information provides a structural understanding of the interaction between FtsZ and ZapA
    corecore