1,022 research outputs found

    Temporal and spatial assessment of four satellite rainfall estimates over French Guiana and North Brazil

    Get PDF
    Satellite precipitation products are a means of estimating rainfall, particularly in areas that are sparsely equipped with rain gauges. The Guiana Shield is a region vulnerable to high water episodes. Flood risk is enhanced by the concentration of population living along the main rivers. A good understanding of the regional hydro-climatic regime, as well as an accurate estimation of precipitation is therefore of great importance. Unfortunately, there are very few rain gauges available in the region. The objective of the study is then to compare satellite rainfall estimation products in order to complement the information available in situ and to perform a regional analysis of four operational precipitation estimates, by partitioning the whole area under study into a homogeneous hydro-climatic region. In this study, four satellite products have been tested, TRMM TMPA (Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis) V7 (Version 7) and RT (real time), CMORPH (Climate Prediction Center (CPC) MORPHing technique) and PERSIANN (Precipitation Estimation from Remotely-Sensed Information using Artificial Neural Network), for daily rain gauge data. Product performance is evaluated at daily and monthly scales based on various intensities and hydro-climatic regimes from 1 January 2001 to 30 December 2012 and using quantitative statistical criteria (coefficient correlation, bias, relative bias and root mean square error) and quantitative error metrics (probability of detection for rainy days and for no-rain days and the false alarm ratio). Over the entire study period, all products underestimate precipitation. The results obtained in terms of the hydro-climate show that for areas with intense convective precipitation, TMPA V7 shows a better performance than other products, especially in the estimation of extreme precipitation events. In regions along the Amazon, the use of PERSIANN is better. Finally, in the driest areas, TMPA V7 and PERSIANN show the same performance

    B cells in rheumatoid synovitis

    Get PDF
    In rheumatoid arthritis, T cells, B cells, macrophages, and dendritic cells invade the synovial membranes, establishing complex microstructures that promote inflammatory/tissue destructive lesions. B cell involvement has been considered to be limited to autoantibody production. However, recent studies suggest that B cells support rheumatoid disease through other mechanisms. A critical element of rheumatoid synovitis is the process of ectopic lymphoid neogenesis, with highly efficient lymphoid architectures established in a nonlymphoid tissue site. Rheumatoid synovitis recapitulates the pathways of lymph node formation, and B cells play a key role in this process. Furthermore, studies of rheumatoid lesions implanted in immunodeficient mice suggest that T cell activation in synovitis is B cell dependent, indicating the role played by B cells in presenting antigens and providing survival signals

    Cryptic variations in abyssal peridotite compositions : evidence for shallow-level melt infiltration in the oceanic lithosphere

    Get PDF
    Author Posting. © The Authors, 2009. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Journal of Petrology 51 (2010): 395-423, doi:10.1093/petrology/egp096.Ranges in clinopyroxene trace elements of 2-3 orders of magnitude occur over <2 cm distance in peridotite samples from the Atlantis II Fracture Zone on the Southwest Indian Ridge. This represents the smallest length-scale at which clinopyroxene trace element concentrations have been observed to vary in abyssal peridotites. Due to the absence of any accompanying veins or other macroscopic features of melt-rock interaction, these peridotites are interpreted as being the result of cryptic metasomatism by a low volume melt. The small length-scale of the variations, including porphyroclastic clinopyroxene grains of 2 mm diameter with an order of magnitude variation in light rare earth elements, precludes an ancient origin for these anomalies. Calculation of diffusive homogenization timescales suggests that for the trace element variations to be preserved, metasomatism occurred in the oceanic lithospheric mantle at 1000-1200°C and 10-20 km depth. This observation provides constraints for the on-axis thickness of the lithospheric mantle at an ultra-slow spreading ridge. Trace amounts of plagioclase are present in at least two of the metasomatized samples. Textural and trace element observations indicate that it formed following the trace element metasomatism, indicating that the mantle can be infiltrated multiple times by melt during the final stages of uplift at the ridge axis. The peridotites in this study are from two oceanic core complexes on the Atlantis II Fracture Zone. Our observations of multiple late-stage metasomatic events in the lithospheric mantle agree with current models and observations of melt intrusion into the mantle during oceanic core complex formation. These observations also indicate that heterogeneous lithospheric mantle can be created at ultra-slow spreading ridges.This research was supported by EAR0115433 and EAR0106578 (NS) and the WHOI Academic Programs Office (JMW)

    Carbon assimilation strategies in ultrabasic groundwater: clues from the integrated study of a serpentinization-influenced aquifer

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Seyler, L. M., Brazelton, W. J., McLean, C., Putman, L. I., Hyer, A., Kubo, M. D. Y., Hoehler, T., Cardace, D., & Schrenk, M. O. . Carbon assimilation strategies in ultrabasic groundwater: clues from the integrated study of a serpentinization-influenced aquifer. mSystems, 5(2), (2020): e00607-00619, doi: 10.1128/mSystems.00607-19.Serpentinization is a low-temperature metamorphic process by which ultramafic rock chemically reacts with water. Such reactions provide energy and materials that may be harnessed by chemosynthetic microbial communities at hydrothermal springs and in the subsurface. However, the biogeochemistry mediated by microbial populations that inhabit these environments is understudied and complicated by overlapping biotic and abiotic processes. We applied metagenomics, metatranscriptomics, and untargeted metabolomics techniques to environmental samples taken from the Coast Range Ophiolite Microbial Observatory (CROMO), a subsurface observatory consisting of 12 wells drilled into the ultramafic and serpentinite mélange of the Coast Range Ophiolite in California. Using a combination of DNA and RNA sequence data and mass spectrometry data, we found evidence for several carbon fixation and assimilation strategies, including the Calvin-Benson-Bassham cycle, the reverse tricarboxylic acid cycle, the reductive acetyl coenzyme A (acetyl-CoA) pathway, and methylotrophy, in the microbial communities inhabiting the serpentinite-hosted aquifer. Our data also suggest that the microbial inhabitants of CROMO use products of the serpentinization process, including methane and formate, as carbon sources in a hyperalkaline environment where dissolved inorganic carbon is unavailable.We thank McLaughlin Reserve, in particular Paul Aigner and Cathy Koehler, for hosting sampling at CROMO and providing access to the wells, A. Daniel Jones and Anthony Schilmiller for their advice regarding metabolite extraction and mass spectrometry, Elizabeth Kujawinski for her guidance in metabolomics data analysis and interpretation, and Julia McGonigle, Christopher Thornton, and Katrina Twing for assistance with metagenomic and computational analyses

    Multistage asthenospheric melt/rock reaction in the ultraslow eastern SWIR mantle

    Get PDF
    Very small amounts of melt are produced during mantle upwelling beneath the ultraslow spreading South West Indian Ridge. Sectors of this Oceanic Ridge are characterized by nearly amagmatic spreading with rare limited eruptions of basalts spotting a mantle-derived serpentinitic crust. A large peridotite dataset was recovered during the Smoothseafloor French expedition leaded by D. Sauter and M. Cannat in 2005 (Sauter et al., 2013). Mantle-derived rocks show a significant modal variability from the sample to the dredge scale with frequent occurrences of millimetric to centimetric spinel-bearing pyroxenitic veins. Mantle residua record a multistage reactional history between small amount of transient melts and variably depleted mantle parcels. Incomplete mineral replacements are widespread showing that both pyroxenes are repeatedly dissolved and recrystallized leaving poekilitic pyroxene and spinel textures. Reacting conditions are modelled assuming an incremental open-system melting model under variable critical porosity/F ratios (Seyler et al., 2011; Brunelli et al., 2014). Incoming melts result to be generated by low degrees of melting in the garnet field then reacting with the rock under near-batch conditions, i.e. at low rates of melt extraction with respect to the actual rock porosity. As a consequence Na (and LREE) countertrends with melting indicators as mineral Cr# and concentration of the moderately incompatible elements (HREE, HFSE). This results in rotation of the REE patterns around a pivot element instead of showing progressive depletion as expected after suboceanic mantle decompression. Brunelli D., Paganelli E. & Seyler, M. 2014. Percolation of enriched melts during incremental open-system melting in the spinel field: A REE approach to abyssal peridotites from the Southwest Indian Ridge. Geoch. et Cosmoch. Acta, 127, 190–203. doi:10.1016/j.gca.2013.11.040. Sauter D., Cannat M., Searle R. 2013. Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nature Geosci., 6(4), 1–7. doi:10.1038/ngeo1771. Seyler M., Brunelli D., Toplis M. J. & Mével C. (2011). Multiscale chemical heterogeneities beneath the eastern Southwest Indian Ridge (52°E-68°E): Trace element compositions of along-axis dredged peridotites. Geochem. Geophys. Geosyst., 12, Q0AC15. doi:10.1029/2011gc003585

    The asymptotic quasi-stationary states of the two-dimensional magnetically confined plasma and of the planetary atmosphere

    Full text link
    We derive the differential equation governing the asymptotic quasi-stationary states of the two dimensional plasma immersed in a strong confining magnetic field and of the planetary atmosphere. These two systems are related by the property that there is an intrinsic constant length: the Larmor radius and respectively the Rossby radius and a condensate of the vorticity field in the unperturbed state related to the cyclotronic gyration and respectively to the Coriolis frequency. Although the closest physical model is the Charney-Hasegawa-Mima (CHM) equation, our model is more general and is related to the system consisting of a discrete set of point-like vortices interacting in plane by a short range potential. A field-theoretical formalism is developed for describing the continuous version of this system. The action functional can be written in the Bogomolnyi form (emphasizing the role of Self-Duality of the asymptotic states) but the minimum energy is no more topological and the asymptotic structures appear to be non-stationary, which is a major difference with respect to traditional topological vortex solutions. Versions of this field theory are discussed and we find arguments in favor of a particular form of the equation. We comment upon the significant difference between the CHM fluid/plasma and the Euler fluid and respectively the Abelian-Higgs vortex models.Comment: Latex 126 pages, 7 eps figures included. Discussion on various forms of the equatio

    Measles resurges in Italy: preliminary data from September 2007 to May 2008.

    Get PDF
    Following an incidence rate of 1/100,000 inhabitants in 2006 [1], Italy has been facing an upsurge of measles cases since September 2007, with outbreaks being reported in various regions. In Italy, measles vaccination is currently offered free of charge as combined measles-mumps-rubella (MMR) vaccine. The current national vaccination schedule recommends two doses of MMR vaccine, given respectively at 11-12 months and 5-6 years of age. Although childhood vaccination coverage has increased in recent years, reaching the national average of 88% in 2006 (source: Ministry of Health), with some regional variability (Figure 1), it is still below the target of 95% set by the National Measles Elimination Plan (MEP) launched in 2003 [2], and outbreaks continue to occur

    Time-series transcriptomics from cold, oxic subseafloor crustal fluids reveals a motile, mixotrophic microbial community

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Seyler, L. M., Trembath-Reichert, E., Tully, B. J., & Huber, J. A. Time-series transcriptomics from cold, oxic subseafloor crustal fluids reveals a motile, mixotrophic microbial community. Isme Journal, (2020), doi:10.1038/s41396-020-00843-4.The oceanic crustal aquifer is one of the largest habitable volumes on Earth, and it harbors a reservoir of microbial life that influences global-scale biogeochemical cycles. Here, we use time series metagenomic and metatranscriptomic data from a low-temperature, ridge flank environment representative of the majority of global hydrothermal fluid circulation in the ocean to reconstruct microbial metabolic potential, transcript abundance, and community dynamics. We also present metagenome-assembled genomes from recently collected fluids that are furthest removed from drilling disturbances. Our results suggest that the microbial community in the North Pond aquifer plays an important role in the oxidation of organic carbon within the crust. This community is motile and metabolically flexible, with the ability to use both autotrophic and organotrophic pathways, as well as function under low oxygen conditions by using alternative electron acceptors such as nitrate and thiosulfate. Anaerobic processes are most abundant in subseafloor horizons deepest in the aquifer, furthest from connectivity with the deep ocean, and there was little overlap in the active microbial populations between sampling horizons. This work highlights the heterogeneity of microbial life in the subseafloor aquifer and provides new insights into biogeochemical cycling in ocean crust.The Gordon and Betty Moore Foundation sponsored most of the observatory components at North Pond through grant GBMF1609. This work was supported by NSF OCE-1062006, OCE-1745589 and OCE-1635208 to J.A.H. E.T.R. was supported by a NASA Postdoctoral Fellowship with the NASA Astrobiology Institute and a L’Oréal USA For Women in Science Fellowship. The Center for Dark Energy Biosphere Investigations (C-DEBI OCE-0939564) also supported the participation of J.A.H. and B.T. This is C-DEBI contribution number 548

    Recent Developments in Few-Nucleon Systems

    Full text link
    N-d elastic scattering is studied at different energies using one of the modern NN interactions, the Argonne v_{18} which explicitly includes the magnetic moment interaction between two nucleons. This interaction, which has been often neglected in the description of the few-nucleon continuum, produces sizable modifications in some elastic observables. Its effects, as well as those produced by the Coulomb potential, are analyzed as a function of energy. The magnetic moment interaction produces appreciable effects in p−dp-d scattering at low energies butthey are very small above 10 MeV. Above 65 MeV Coulomb effects can be observed only in specific observables as for example T21T_{21}.Comment: 9 pages, 5 figures, invited talk at the 17th International IUPAP Conference on Few-Body problems in Physics, June 5-10, 2003, Durham (USA
    • …
    corecore