22 research outputs found

    Caprylic (Octanoic) Acid as a Potential Fatty Acid Chemotherapeutic for Glioblastoma

    No full text
    High grade glial tumors (HGGs) including anaplastic astrocytoma (WHO Grade-III) and glioblastoma multiforme (GBM, WHO Grade-IV) are among the most malignant cancers known to man. Due to their defective mitochondria, HGG cells consume glucose via glycolysis even in the presence of oxygen. Overall survival is worse in HGG patients that are hyperglycemic. Unlike normal neural cells, HGG cells cannot efficiently metabolize ketone bodies for energy. Thus, a metabolic treatment based on therapeutic ketosis (reduced glucose with elevated ketone bodies) was proposed to treat GBM and was supoported from preclinical studies. Caprylic (octanoic) acid, a monocarboxylated saturated fatty acid, is among the best producers of ketone bodies and induces necrosis of experimental tumors at high dose. Caprylic acid is enriched in coconut and in goat's milk. It is also a post-translational modifier of the ghrelin hormone and is produced in trace amounts in human tissues. Caprylic acid is a straight-chain isomer of the antiepileptic valproic acid, which is used in treatment of HGG-associated seizures and which may increase survival in GBM patients according to epidemiological observations. Among the valproic acids analogs tested, caprylic acid is the most potent molecule to block C6 astrocytoma cell growth in vitro and accumulates selectively within glial cells as shown by Positron Emission Tomography in vivo. Caprylic acid blocks glycolysis both in healthy liver and in malignant liver cells, which is more prominent in the latter and also lowers blood glucose. Noteworthy, caprylic acid exerts neuroprotective- and mitochondria-protective effects in several models of neurodegenerative diseases. Boost injections of caprylic acid at non-toxic levels during classical ketogenic metabolic therapy may fortify antitumor actions and reduce systemic toxicity by differential programming of mitochondrial and other metabolic pathways

    Does a ketogenic diet have beneficial effects on quality of life, physical activity or biomarkers in patients with breast cancer: A randomized controlled clinical trial

    No full text
    Introduction: Despite recent interest in the use of ketogenic diets (KDs) for cancer, evidence of beneficial effects is lacking. This study examined the impact of a randomly assigned KD on quality of life, physical activity and biomarkers in patients with breast cancer. Method: A total of 80 patients with locally advanced or metastatic breast cancer and without a history of renal disease or diabetes were randomly assigned to either a KD or a control group for this 12-week trial. Concurrent with the first, third, and fifth chemotherapy sessions, quality of life, physical activity, and biomarkers (thyroid function tests, electrolytes, albumin, ammonia, ALP, lactate and serum ketones) were assessed. Dietary intake was also recorded on admission and the end of the treatment. Results: No significant differences were seen in quality of life or physical activity scores between the two groups after 12 weeks; however, the KD group showed higher global quality of life and physical activity scores compared to the control group at 6 weeks (P = 0.02 P = 0.01). Also, serum lactate and ALP levels decreased significantly in the KD group compared to the control group at the end of the intervention (10.7 ± 3 vs 13.3 ± 4, 149 ± 71 vs 240 ± 164, P = 0.02 and P = 0.007, respectively). A significant inverse association was observed between total carbohydrate intake and serum beta-hydroxybutyrate at 12 weeks (r =-0.77 P 0.5. Conclusion: According to our results, besides a higher global quality of life and physical activity scores compared to the control group at 6 weeks, KD diet combined to chemotherapy in patients with breast cancer does not bring additional benefit about quality of life and physical activity at 12 weeks. However, decreases seen in levels of lactate and ALP in the KD group suggest that a KD may benefit patients with breast cancer. Trial registration: This trial has been registered on Iranian Registry of Clinical Trials (IRCT) under the identification code: IRCT20171105037259N2 https://www.irct.ir/trial/30755 © 2020 The Author(s)

    Effects of Ketogenic metabolic therapy on patients with breast cancer: A randomized controlled clinical trial

    No full text
    Background: Ketogenic metabolic therapy (KMT) using ketogenic diets (KD) is emerging as viable alternative or complementary strategy for managing cancer; however, few clinical trials have been reported. The present study aimed to evaluate the effects of a KD in patients with locally advanced and metastatic breast cancer receiving chemotherapy. Methods: A total of 80 patients undergoing treatment with chemotherapy were randomly assigned to KD or control group for 12 weeks. Concurrent with the admission, midway point, and at 12 weeks, fasting blood samples were collected for evaluation of insulin, IGF-1, CEA, CA15-3, ESR, CRP, IL-10, and TNF-α. Sonography for patients with locally advanced disease and CT or MRI scans for patients with metastatic disease were done on admission and at 12 weeks. At the completion of the chemotherapy, patients with locally advanced disease underwent surgery and stage was recalculated. Also patients with metastases were evaluated for response rate. Results: TNF-α decreased significantly after 12 weeks of treatment (MD: 0.64 CI 95%: �3.7, 5 P < 0.001), while IL-10 increased (MD: 0.95 CI 95%: �1,3 P < 0.001) in the intervention compared to the control group. Patients in the KD group had lower adjusted serum insulin compared to the control group (MD:-1.1 CI 95%: �3,1 p < 0.002). KD lead to a reduction in tumor size in the KD compared to the control (27 vs 6 mm, P = 0.01). Stage decreased significantly in patients with locally advanced disease in the KD group after 12 weeks (P < 0.01). No significant differences in response rate were observed in patients with metastatic disease. Conclusions: KMT in breast cancer patients might exert beneficial effects through decreasing TNF-α and insulin and increasing IL-10. KD may result in a better response through reductions in tumor size and downstaging in patients with locally advanced disease; however, more studies are needed to elucidate the potential beneficial effects of KD in patients with metastases. Trial registration: This trial has been registered on Iranian Registry of Clinical Trials (IRCT) under the identification code: IRCT20171105037259N2. https://www.irct.ir/trial/30755. © 2020 Elsevier Ltd and European Society for Clinical Nutrition and Metabolis
    corecore